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Preface

The articles in this volume represent the invited lectures at the RESMOD Summer
School on Model Theory of Groups and Automorphism Groups held in Blaubeuren,
Germany, from 31 July to 5 August 1995. This was an EC-funded meeting directed
at graduate students and researchers in Model Theory and Algebra and consisted
mainly of invited lectures surveying various recent interactions between model the-
ory and and other branches of mathematics, notably group theory.

RESMOD is the acronym for the European Human Capital and Mobility Net-
work on Model Theory and Applications coordinated by the Equipe de Logique
Mathematique at Universite Paris 7. The programme committee for the meeting
consisted of Wilfrid Hodges, Daniel Lascar and Dugald Macpherson. The meeting
took place at the Heinrich Fabri Institut of the University of Tiibingen, and the
local organisers were Ulrich Felgner and Frieder Haug.

David M. Evans,
School of Mathematics,
University of East Anglia,
Norwich NR4 7TJ,
England.
February 1997.





Introduction

The articles in this volume demonstrate the wide variety of interactions between
algebra (particularly group theory) and current research in model theory. On the
one hand, the analysis of direct questions about the first-order theories of classes
of algebraic structures requires an interplay between model-theoretic and algebraic
methods, and often such questions also evolve into ones which are interesting from a
purely algebraic viewpoint. More indirectly, the model-theoretic analysis of classes
of structures using some of the latest developments of model theory (particularly
stability theory) has recently resulted in a wave of new applications of model theory
to other parts of mathematics.

Alongside these developments there has been considerable interaction between
model theory and the study of infinite permutation groups. Automorphism groups
of model-theoretically interesting structures have provided a rich supply of exam-
ples and problems for the permutation group theorists, and the study of automor-
phism groups has been a crucial tool in certain model-theoretic questions.

Readers can judge for themselves the extent to which the articles in this vol-
ume fit into this pattern, but I shall give a brief sketch of them, emphasising the
interactions between model theory and other parts of mathematics.

The article by Evans, Ivanov and Macpherson is a survey largely concerned with
a question that originated in studying the fine detail of totally categorical struc-
tures, but which is now seen (and studied) as a problem about infinite permutation
groups. The techniques in the papers by Lascar and Evans are model-theoretic in
flavour, but the applications are to the study of the automorphism group of the
field of complex numbers, and the papers are written without using model-theoretic
terminology. The papers by Chatzidakis and Hodges form a survey of recent work
on the model theory of pseudo-finite fields and in particular give surprising appli-
cations of these results (due to Hrushovski and Pillay) to the subgroup structure
of Chevalley groups over prime fields.

Cameron's paper draws together strands from model theory, permutation groups
and combinatorics. It studies a graded algebra which can be associated to any
countable l o-categorical structure, and which is also significant in enumerative
combinatorics.

The papers by Boffa, Oger and Chiswell are surveys of various aspects of the
model theory of particular classes of groups. The questions considered start out as
model-theoretic ones (equivalence of formulas, elementary equivalences at various
levels of quantifier complexity et cetera), but also develop into questions which are
interesting from a purely group-theoretic viewpoint. The techniques are a mixture
of group theory and model theory (notably ultraproducts). The paper by Pfander
follows on from Chiswell's article and gives new results on the finite presentability
of groups with the same existential and universal theory as the non-abelian free
groups.

The paper by Burke and Prest is a contribution to the theory of modules: an
area where model-theoretic methods have had a significant impact on the algebraic
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theory. Finally, the paper by Kim is a survey of recent work (of Kim and Pillay)
on Shelah's notion of simplicity of a first-order theory. In such theories a good
notion of independence (forking) can be described and various unstable algebraic
structures have recently been shown to have simple theories (for example, pseudo-
finite fields).

In the remainder of this introduction I will give some background material
and pointers to the literature which may be helpful to the non-specialist reader.
This will be very brief, not least because there are already several excellent swift
introductions to the area in print: for example, the opening sections of [1] and
(more comprehensively) the article [6].

Section 2 below is based on notes of Dugald Macpherson originally prepared as
an appendix to the `Finite covers' paper in this volume.

1 Model theory
The books by Chang and Keisler [2] and Hodges [5] give a thorough treatment of
model theory excluding stability theory. A good introduction to the latter can be
found in the the book by Pillay [7], and [8] has many of the more recent develop-
ments.

1.1 First-order languages and structures

In a first-order language one has an alphabet of symbols and certain finite sequences
of these symbol (the formulas of the language) are the objects of interest. The
symbols are connectives A (and), V (or), -, (not); quantifiers `d and 3; punctuation
(parentheses and commas); variables; and constant, relation and function symbols,
with each of the last two coming equipped with a finite `arity' specifying how many
arguments it has. The number of these constant, relation and function symbols
(together with their arities) is referred to as the signature of the language.

The terms of the language are built inductively. Any variable or constant
symbol is a term and if f is an n-ary function symbol and t1,. .., to are terms, then
A ti, ..., tn) is also a term (all terms are built in this way).

Now we can build the formulas of the language. Again, this is done inductively.
If R is an n-ary relation symbol in the language and t1, ... , to are terms then
R(tl,... , tn) is a formula (an atomic formula). If 0, 0 are formulas and x a variable,
then (0) A (0), (<k) V (0), -(O), dx(O), 3x(o) are formulas (of higher `complexity').
A formula not involving any quantifiers is called quantifier free or open. There is
a natural notion of a free variable in a formula, and when we write a formula as
(k(X1,.. . , x.m) we mean that its free variables are amongst the variables x1,. .. , xm.
A formula with no free variables is called a sentence. For more details the reader
could consult ([2], Section 1.3) or ([5], Section 2.1).

If L is a first-order language then an L-structure consists of a set M equipped
with a constant (that is, a distinguished element of M), n-ary relation (that is,
a subset of Mn), and n-ary function Mn -> M for each constant symbol and
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n-ary relation and function symbol in L. If O(x1,...,x,,,) is an L-formula and
a1, _,am E M then one can `read' q(a1 i ... , am) as a statement about the be-
haviour of a1,.. . , am and these constants, relations and functions (interpreting
each constant, relation or function symbol as the corresponding constant, relation
or function of M), which is either true or false. If it is true, then we write

M q5(a1i...,am).

All of this can of course be made completely precise (defined inductively on the
complexity of 0): see ([2], Section 1.3) and ([5], Section 2.1) again. We shall always
have = as a binary relation symbol in L and interpret it as true equality in any
L-structure.

If 44 is a set of L-sentences and M an L-structure we say that M is a model of
it (and write M = 4i) if every sentence in 4i is true in M. If there is a model of 4i
we say that 4i is consistent. The set of L-sentences true in M is called the theory
of M. Two L-structures M1 and M2 are elementarily equivalent if they have the
same theory. This is written as M1 = M2. Thus in this case the structures M1
and M2 cannot be distinguished using the language L. The following basic result
of model theory shows that one should not expect first-order languages to be able
to completely describe infinite structures.

Theorem 1.1 (Lowenheim-Skolem) Let L be a first-order language with signature
of cardinality A. Let µ, v be cardinals with µ, v > max(A, l o), and suppose M1 is an
L-structure with cardinality µ. Then there exists an L-structure M2 elementarily
equivalent to M1 and of cardinality v.

The `upward' part of this result (where v > u) follows easily from the funda-
mental theorem of model theory:

Theorem 1.2 (The Compactness Theorem) Let L be a first-order language and 4i
a set of L-sentences. If every finite subset of 4i is consistent, then 41 is consistent.

The original version of this is due to Godel (1931). Proofs (using a method due
to Henkin (1949)) can be found in ([2], Theorem 3.2.2) and ([5], Theorem 6.1.1).
Algebraists may prefer the proof using ultraproducts ([2], Corollary 4.1.11) and the
theorem of Los ([2], Theorem 4.1.9, or [5], Theorem 9.5.1).

If M, N are L-structures with M C N and the distinguished relations, functions
(and constants) of N extend those of M, then we say that M is a substructure of
N. If also for every L-formula O(x1,. .. , x,,,,) and a,,. . ., a,,,, E M we have

Mk0(a1,...,am)toN=cb(a1,...,am)

then we say that M is an elementary substructures of N (and that N is an ele-
mentary extension of M) and write M N. A stronger version of the Lowenheim-
Skolem Theorem (1.1) is true: the smaller of M1i M2 may be taken to be an
elementary substructure of the larger. Proofs can be found in ([2], Theorems 3.1.5
and 3.1.6) and ([5], Corollaries 3.1.5 and 6.1.4).
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1.2 Definable sets; types

Suppose L is a first-order language and M an L-structure. Let n E N. A subset A of
Mn is called (parameter) definable if there exist b1, ... , b,n E M and an L-formula

with

A = Id EM":M[=cd(a,b)}.

If the parameters b can be taken from the subset X C_ M then A is said to be X-
definable. The union of the finite X-definable subsets of M is called the algebraic
closure of X, denoted by acl(X), and the union of the X-definable singleton subsets
of M is the definable closure of X, denoted by dcl(X). It is not hard to check that
both of these are indeed closure operations on M.

So the definable subsets of Mn are the ones which can be described using L-
formulas (and parameters). Conversely one could take a particular n-tuple a E Mn
and a set of parameters A C M and ask what the language L can say about a
(in terms of A and M). This gives the notion of the type of a over A, which by
definition is

tpM(a/A) = bl,...,b. E A, M I-- 0 ( a ,

(the subscript M is dropped if this is clear from the context). It is sometimes useful
to consider the type of a (over A) using only certain L-formulas. For example, for
the quantifier free type of a over A one takes only quantifier free 0 in the above
definition. It is also possible to define the type of an infinite sequence of elements
of M. The reader can consult ([5], Section 6.3) or ([2], Section 2.3) for further
details here.

More generally, a (complete) n-type over A is a set of L-formulas with param-
eters from A equal to tpN(a/A) for some elementary extension N of M and some
a E Mn. There is no reason to suppose, for arbitrary M and A, that this type
should be realised in M, that is, there exists a' E Mn with tpM(a'/A) = tpN(a/A).
For example, this would clearly be impossible if A = M and a V Mn. However, it
can happen that for some infinite cardinal a if JAI < is then every complete n-type
over A is realised in M: in this case M is called rc-saturated, and if s; = IMI then
M is saturated. The reader should consult ([2], Section 2.3) and then ([2], Chapter
5) and ([5], Chapter 10) for more on this subject as the need arises.

1.3 Interpreted structures; imaginary elements

Some structures can be built out of others in a definable way. The classical exam-
ple is the construction of the field of rational numbers from the ring of integers.
Another example is algebraic groups over a particular field.

Formalising this leads to the notion of an interpretation of one structure in
another. Suppose K and L are first-order languages, M a K-structure and N an
L-structure. We say that N is interpretable in M if for some n E N there exist:

1. a 0-definable subset D of Mn;
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2. a 0-definable equivalence relation E on D;

3. a bijection y : N -> DIE

such that for every 0-definable subset R of N' the subset of Mm given by

R = {(ai,...,am) E (M")m : (7-1(a1IE),...,y-1(a,"IE)) E R}

is 0-definable in M.
Thus the set N can be identified with a 0-definable subset of M" factored by a

0-definable equivalence relation, and with this identification all of the L-structure
on N can be derived from the K-definable structure on M. There is a considerable
amount of redundancy in the definition: it is only necessary to have 0-definability
of R when R is a distinguished constant or relation, or the graph of a distinguished
function.

If E is simply equality on D then we say that N is definable in M. If also
D = M then we say that N is a reduct of M (so N just consists of M with some
of its definable structure forgotten). It is also possible to formulate a notion of
interpretation using parameters. The reader should consult ([5], Section 5.3) for
further information on interpretations.

Equivalence classes in DIE as above are referred to as imaginary elements of
M. Taking the set of all imaginary elements (as D and E range over all 0-definable
sets and equivalence relations) gives us the set M,9. We wish to regard this as a
first-order structure, so we extend the language K of M in a canonical way (to
a first-order language K,9), and part of the Keg-theory of Me9 describes how the
imaginary elements correspond in a 0-definable way to the original K-structure
M. The reader can consult ([5], Section 4.3) for the precise details of how to do
all of this. Once we have this concept, it makes sense to extend notions such as
`parameter definable', `types', `algebraic closure' etc. to subsets of M. Again we
refer the reader to ([5]) for further details if the need arises.

2 Permutation groups
Most of what is said here can be found in more detail in ([5], Section 4.1), ([1],
Chapters 1 and 2) and ([6]). A general reference on permutation groups which
usefully contains material on automorphism groups of infinite structures is [3].

2.1 Actions and orbits
Let X be any set. The group of all permutations of X is called the symmetric
group on X and is denoted by Sym(X). A permutation group on X is a subgroup
of this. The image of the element x E X under the permutation g E Sym(X)
is denoted by gx. More generally, an action of a group G on X is a function
a : G x X -+ X such that for all x E X and g, h E G we have a(1, x) = x
and a(g, a(h, x)) = a(gh, x). It is easy to see that this is equivalent to the map
g H a(g, -) being a homomorphism from G into Sym(X). Thus each element of
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G induces a permutation of X and a product of elements in the group induces the
corresponding product of permutations. Henceforth, we shall also denote a(g, x) by
gx if the action is clear from the context. (It should be noted that some people write
their actions on the right, and so would write xg instead of gx, with corresponding
changes needed for other pieces of notation. This rarely causes confusion.)

Given an action of a group G on a set X the orbits are the equivalence classes
under the equivalence relation - on X, where x1 - x2 if there is g E G with
gxl = x2. We say that the action is transitive on X if there is a unique orbit. One
way of manufacturing transitive actions of a group G is via coset spaces. Let H
be a subgroup of G and let Y = {gH : g E G} be the set of left cosets of H in
G. Define an action of G on Y by setting a(g1ig2H) = g1g2H. Clearly this is a
transitive action. However, in a strong sense this gives us all transitive actions of G.
Suppose G acts transitively on a set X. Let x E X and let H = {g E G : gx = x}
(the stabiliser of x in G, usually denoted by Gm). Then the map 0 : Y -i X given
by 0(gH) = gx is a well-defined bijection and for all y E Y and g E G we have
0(gy) = gO(y). Thus the actions of G on X and Y are equivalent. This is the
Orbit-Stabiliser Theorem.

Out of any given action of a group G on a set X we can produce various other
actions of G. For example, if Y C X is a union of G-orbits, then one can simply
restrict the action to Y. Also, suppose there is a G-invariant equivalence relation
on X. Then one can consider the action of G on the set of equivalence classes.
Next, suppose k is a positive integer. Then there is an induced action of G on X k
(given by g(x1, , xk) = (gx1, ,gxk)), and an equally natural action on X{k}
the set of k-sets from X. We say that G is k-transitive if, in the first action, all
k-tuples of distinct elements lie in the same orbit. We say G is k-homogeneous if
it is transitive on X{k}. The original action is highly transitive (or homogeneous)
if it is k-transitive (or k-homogeneous) for all k E N.

2.2 Automorphism groups and topological groups

Suppose L is a first-order language and M an L-structure. By an automorphism
of M we mean a permutation of M which preserves each of the distinguished
constants, relations and functions of M. The set of these forms a subgroup of
Sym(M), called the automorphism group of M, and is denoted by Aut(M). It is
clear that if A C M, then Aut(M/A) = {g E Aut(M) : ga = a Va E A} is a
subgroup of Aut(M) which stabilises any A-definable subset of Mk. Furthermore,
if b E Mk and g E Aut(M/A) then tpM(b/A) = tpM(gb/A). More subtly, if M is
saturated then the converse is also true: if b and b' have the same type over A and
JAI < IMO then b and b' are in the same Aut(M/A)-orbit (for example, see ([5],
Corollary 10.4.12), or the proof of ([2], Theorem 2.3.9) if M is countable). Note
that any element of Aut(M) induces an automorphism of M,9.

Conversely, if G is a permutation group on a set X then there is a natural
first-order structure with domain X, on which G acts as a group of automorphisms
(with, for each n E N, the same orbits on n-tuples as the full automorphism group).
For each orbit 52 of G on Xn (as n ranges through N) introduce an n-ary relation
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symbol Ro, interpreted on X by the orbit Q. The corresponding language is known
as the canonical language, and the structure on X as the canonical structure.

Suppose that X is any set. Then there is a natural topology on Sym(X) which
makes it into a topological group (so multiplication and inversion are continuous
maps). The open sets are unions of cosets of pointwise stabilisers of finite subsets of
X. We then make any permutation group G on X into a topological group by giving
it the relative topology. To put this another way, if g E G then the cosets 9G(F)
as F ranges over the finite subsets of X form a basis of open neighbourhoods of g
in G, where G(F) = {h E G : hx = x Vx E F}. Clearly this topology is Hausdorff.
In fact, as any open coset is closed, the topology is totally disconnected. It it
separable if and only if X is countable and discrete if and only if G(F) = {1} for
some finite F C_ X. It is not hard to show that a closed subgroup G of Sym(X) is
compact if and only if all of its orbits on X are finite.

For us, the most important fact about this topology will be that a subgroup of
Sym(X) is closed if and only if it is the full group of automorphisms of a first-order
structure with domain X. In fact, if G < Sym(X) then the automorphism group
of the canonical structure of G on X is the closure of G in Sym(X).

If X is countable the topology is metrisable: enumerate X as (x,, : n E N), and
define a metric d on Sym(X) by putting, for distinct g, h E Sym(X), the distance
d(g, h) to be 1/m where m is as large as possible such that g agrees with h, and
g-1 with h-1, on xj for all l < m. Thus, Sym(X) becomes a complete metric space
with a countable basis of open sets (a Polish space).

2.3 Ro-categoricity
For saturated structures M there is a strong connection between what is definable
in a first-order way and the automorphism group: over small subsets of M orbits
equate to types. For countable No-categorical structures the connection is even
stronger, and automorphism groups of po-categorical structures are probably the
most widely studied class of infinite permutation groups.

If M an L-structure and r, an infinite cardinal we say that M is ic-categorical if
its theory has a model of size is and all such are isomorphic. The case is = No (that
is, countably infinite rc) has a group-theoretic formulation. Say that a permutation
group G on an infinite set X is oligornorphic if it has finitely many orbits on
X k for all positive integers k. Then the theorem of Engeler, Ryll-Nardzewski,
and Svenonius asserts that, for a countably infinite structure M, the following are
equivalent:

1. M is no-categorical;

2. Aut(M) acts oligomorphically on M;

3. for every n E N there are only finitely many n-types over 0 (realised in
elementary extensions of M).

Proofs can be found in ([2], Theorem 2.3.13) or ([5], Theorem 7.3.1). There is a
translation between the group-theoretic and model-theoretic terminology in this
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case. The countable model M is saturated so (realisations in M of) n-types over
a finite subset A of M are exactly Aut(M/A)-orbits on M'. But as there are only
finitely many of these, each of them is actually A-definable. So a subset of Mn
is A-definable if and only if it is invariant under Aut(M/A). It then follows from
the Orbit-Stabiliser Theorem that a E M is in the algebraic closure of A if and
only if Aut(M/A U {a}) is of finite index in Aut(M/A). The same is true in M.
Moreover stabilisers of elements of Meq are exactly the open subgroups of Aut(M)
(use ([1], 1.2, Exercise 4)).

Obvious examples of countable No-categorical structures include a pure set, the
set of unordered pairs from a pure set (with a natural induced graph structure,
two 2-sets adjacent if they intersect in a singleton), the rationals as an ordered set
and the countable atomless boolean algebra. The paper [4] is a survey of various
ways of constructing Ro-categorical structures and classification results relating to
them. The book [1] contains a large amount of information about automorphism
groups of these structures.
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0 Outline of the Notes
These notes examine a technique for building new structures from simpler ones.
The original motivation for this construction is Zil'ber's `ladder theorem' (Theorem
1.6.4 here), which describes how totally categorical structures are built from strictly
minimal sets by a sequence of covers. Similar results exist for several other classes
of structures, such as 111-categorical structures, No-categorical w-stable structures,
and smoothly approximated structures.

We will concentrate on finite covers of countable No-categorical structures, and
we often describe structures entirely by their automorphism groups, without refer-
ence to any particular language (in the No-categorical case this is justified by the
Ryll-Nardzewski theorem). The following terminology is convenient.

If S2 is a set then we regard Sym(c), the symmetric group on S2, as a topological
group with a base of open sets being given by cosets of pointwise stabilisers of finite
subsets of Q. Then a permutation structure is a pair (W; G) where W is a non-
empty set (the domain), and G is a closed subgroup of Sym(W) (the group of
automorphisms). We shall usually write G = Aut(W) and refer simply to `the
permutation structure W.' If A is a subset of W and B a subset of W (or more
generally of some set on which Aut(W) is acting in an obvious way), then Aut(A/B)
denotes the permutations of A which extend to elements of Aut(W) fixing every
element of B. We shall write permutations on the left of the elements of W.

Permutation structures are all obtained by taking automorphism groups of first-
order structures on W, and we often regard a first-order structure as a permutation
structure without explicitly saying so. When we do this, the group of automor-
phisms for the permutation structure is, of course, just the automorphism group
of the first-order structure. We can now define a finite cover (a model-theoretic
definition is given in 1.1.2).

Definition 0.0.1 If C, W are permutation structures, then a finite-to-one surjec-
tion 7r : C -+ W is a finite cover if its fibres form an Aut(C)-invariant partition of
C, and the induced map it : Aut(C) -> Sym(W) given by p(g)w = lr(g1r-1(w)) for
g E Aut(C) and w E W has image Aut(W). We refer to p as the restriction map.
The kernel of the finite cover is kerµ = Aut(C/W).

The main problem which concerns us is:

The Cover Problem: For a given No-categorical structure W, de-
scribe its finite covers.

An overview of how the material in this paper relates to this problem can
be found in Section 1.7, after we have given the basic definitions, examples and
results. For the rest of this section, we simply describe the structure of these notes
and highlight some of the principal results in each section.

Section 1 first gives the basic definitions and some `naturally occuring' examples
of covers. We discuss notions closely related to finite covers, notably symmetric
extensions, and give some of the basic theory, sometimes in this wider context.
Finally we review some of the model-theoretic background to the cover problem.



Finite Covers 3

Three general constructions of finite covers are described in Section 2: free cov-
ers, digraph coverings and coverings of two-graphs. We show that free covers are
uniquely determined by choice of fibre and binding groups, and so we have a satis-
factory classification of these. The material on digraph and two-graph coverings is
suggested by ideas from topology (covering spaces) and finite combinatorics. Both
constructions provide examples of finite covers with finite kernels.

In Section 3 we give some preliminary results on finite covers. We then give
various ways of dividing up the general cover problem and make various reduc-
tions which show that we should focus on some special types of covers (minimal,
superlinked and abelian kernel). Any finite cover is an expansion of a free finite
cover with the same fibre and binding groups, and we aim for classification up to
conjugacy within the automorphism group of this free cover. On the other hand,
any finite cover is a reduct of a minimal cover. We show that the kernel of a min-
imal cover of an 3no-categorical structure is nilpotent, and thereby reduce certain
problems to consideration of finite covers with abelian kernels.

Finite covers whose kernels are finite are analysed in Section 4. We show that in
some cases these can all be described in terms of digraph coverings. In some other
cases not covered by these results, a careful analysis of the example of a vector
space covering its projective space provides a different answer. The techniques and
notions in Section 4 parallel very clearly some ideas from stability theory (strong
types, stationarity, and distinguished extensions of types). In Section 5 we amplify
further on this, and consider the results of Section 4 from this viewpoint.

In Section 6 we consider finite covers with abelian kernels. Following the ap-
proach of Ahlbrandt and Ziegler we divide the problem into two parts: describe
the possibilities for the kernels, then work out what the possible covers can be
with each particular kernel. For the first part we outline how Pontriagin duality
can sometimes be useful. For the second part, we describe the construction of the
cohomology group H1 which parametrises the covers with a given kernel. We use
these ideas to show how results on the cohomology and representation theory of
finite groups can be used in our context.

Section 7 contains further results which can be used to calculate cohomology
groups. These are all standard results from cohomology of discrete groups, adapted
to our purposes. We show how these can be used to prove finiteness of H1, given
additional constraints on W.

Section 8 contains some open problems and questions which occurred to us
during the writing of this paper.

1 Introduction to covers

1.1 Definitions

We give the basic definitions associated with permutation structures and finite
covers. We suggest that the reader skims over them quickly and refers back when
necessary.
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1.1.1 Permutation structures

If W1 and W2 are sets of the same cardinality then any bijection 0 : W1 W2

induces an isomorphism f o : Sym(W1) - Sym(W2). We say that permutation
structures (W1iG1) and (W2;G2) are isomorphic if for some bijection 0 we have
f1(G1) = G2. (As pointed out to us by Martin Ziegler, this produces a slight
conflict in terminology: the group of isomorphisms from a permutation structure
(W; G) to itself is actually the normaliser in Sym(W) of G, so it might be more
correct to refer to this as the `automorphism group of the permutation structure,'
rather than G.)

Two permutation structures are bi-interpretable if their automorphism groups
are isomorphic as topological groups. If the permutation structures arise from
countable ho-categorical structures there is a model-theoretic interpretation of this
notion due to G. Ahlbrandt and M. Ziegler ([2]: see also Section 7 of [42]). The
following useful observation is due to E. Hrushovski ([36]).

Lemma 1.1.1 A permutation structure (W; G) such that G has finitely many or-
bits on W is bi-interpretable with a transitive permutation structure (Wi; G1).

Proof. Let x be a finite tuple of elements from W containing (at least) one
element from each G-orbit. Let W1 be the orbit under G of x. We get a natural
continuous, injective homomorphism G -* Sym(W1), and it is easy to see that the
image G1 of this is closed in Sym(Wi). The inverse map G1 - G is also continuous,
and so we have the result.

Related to this construction is the notion of a Grassmannian of a transitive
permutation structure W. First recall that if W has the property that Aut(W/X)
has finitely many finite orbits for all finite subsets X of W then we define the
algebraic closure acl(X) of X to be the union of the finite Aut(W/X)-orbits. This
is a closure operation on the finite subsets of W. If A is a finite algebraically closed
subset of W then the Grassmannian Gr(W; A) is the permutation structure having
domain WA = {gA : g E Aut(W)) and automorphism group those permutations
induced on this set by Aut(W). To see that this is a closed subgroup of Sym(WA)
observe that, as in Lemma 1.1.1, the group of permutations induced by Aut(W) on
the orbit of an enumeration of A is closed, and there is an invariant finite-to-one
map from this orbit to WA, so what we want follows from Lemma 1.4.2. If Aut(W)
acts faithfully on WA then Gr(W; A) is bi-interpretable with W.

We shall frequently employ the following terminology. Suppose Co and C are
permutation structures with the same domain, and Aut(C) < Aut(Co). Then we
say that Co is a reduct of C, or C is an expansion of Co. We use the adjective
proper to indicate that Aut(C) < Aut(Co).

1.1.2 Finite covers

We first give the model-theoretic definition of finite cover. In practice, however,
we will use the group-theoretic translation of this given in the opening remarks
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(0.0.1).

Definition 1.1.2 Let C and W be first-order structures. A finite-to-one surjection
7r : C --> W is a finite cover of W if there is a 0-definable equivalence relation E
on C whose classes are the fibres of 7r, and any relation on W" (respectively, C')
which is 0-definable in the 2-sorted structure (C, W, 7r) is already 0-definable in W
(respectively, C).

Observe that a finite cover it : C --+ W induces a homomorphism

p : Aut(C) -+ Aut(W),

given by putting p(g)(w) = 7r(g7r-1(w)) for all g E Aut(C) and w E W. In
fact, if W is countable No-categorical, then the above definition of a finite cover
is equivalent to saying that the fibres of 7r are the classes of an Aut(C)-invariant
equivalence relation on C, and the map Aut(C) - Aut(W) induced by it has image
Aut(W) (Lemma 1.4.2 below ensures that Definition 1.1.2 implies the surjectivity),
and so this agrees with what was given as Definition 0.0.1. We refer top as the
restriction homomorphism.

Suppose that 7r : C -- W is a finite cover. Then Aut(C) has a normal subgroup
K, the kernel of the cover, defined by

K := {g E Aut(C) : 7r(x) = a(gx) for all x E C},

(so also the kernel of the restriction homomorphism Aut(C) -> Aut(W)). We have
a short exact sequence

1-+K- Aut(C)-Aut(W)-+ 1.

The cover splits if K has a closed complement in Aut(C), that is, there is a closed
subgroup H of Aut(C) such that KH = Aut(C) and Kfl H = 1. Equivalently, C is
a reduct of a cover of W with trivial kernel (namely, a structure with automorphism
group H).

For each a E W let C(a) denote the fibre above a, that is {x E C : r(x) = a}.
We also define, for any a E W, the fibre group of the cover at a as the permutation
group induced by Aut(C) on C(a). The binding group at a is a normal subgroup
of the fibre group, and is the permutation group induced on a fibre C(a) by the
kernel K. Clearly, if Aut(W) acts transitively on W then all of the fibre groups are
isomorphic as permutation groups, as are the binding groups. We refer to these as
the fibre and binding groups of the cover. If these are unequal, we say that the
cover is twisted.

We mention some special kinds of covers. We say that it : C -> W is free if
Aut(C/W) = IIwEW Aut(C(w)/W), that is, the kernel is the full direct product of
the binding groups (so as big as possible). At the other extreme, the cover is trivial
if its kernel Aut(C/W) is the trivial group (this differs from the terminology in [3]
and [4] where `trivial' means `split'). A principal cover it : C -> W is a free finite
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cover where the fibre and binding groups at each point are equal. So the kernel of
a principal cover is the direct product of all the fibre groups.

If C, C' are permutation structures with the same domain and 7r : C -* W and
7r' : C' -> W are finite covers with ir(c) = ir'(c) for all c E C = C' then we say that
ir' is a covering expansion of 7r if Aut(C') < Aut(C).

We say that finite covers 1r1 : C1 - W and 7r2 : C2 -* W are isomorphic if
there exists a bijection 0 : C1 --> C2 which sends the set of fibres of ir1 to the set
of fibres of 7r2 and such that the induced map fo : Sym(Cl) -* Sym(C2) (as in
Section 1.1.1) sends Aut(Cl) to Aut(C2). If additionally 0(iri 1(w)) = r2 1(w) for
all w E W then we say that ir1 and 72 are isomorphic over W.

1.2 Examples

We give some examples of cover-like constructions, which will be important later.

Example 1. This is the crudest kind of cover. Let W be any structure, and C
have domain W x 10, 1}, and regard C as a cover of W via the map (w, i) w.
Assume there is no other structure on W. If W is an L-structure, we may regard C
as an L U {E}-structure, where E is a binary relation interpreted as the equivalence
relation given by the fibres of a, and each relation of L holds of a tuple in C if
and only if it holds of its image under a. Then C is a cover (a `double cover') of
W, and Aut(C) = Z2 Wr Aut(W) (the unrestricted wreath product in its natural
imprimitive action, with Z2 denoting the cyclic group of order 2). The kernel is
the Cartesian product Z2 W1 and the fibre and binding groups are both Z2, acting
regularly.

Example 2. Let D be a pure set and W be the set of 2-subsets of D. Regard W
as a structure with automorphism group Sym(D), acting naturally (for example, we
can view W as a graph, two 2-sets being adjacent if they intersect in a singleton).
Let C be the set of ordered 2-subsets of D. Let a : C - W by the map (x, y) '-*
{x, y}. Then C is a double cover of W. The kernel is trivial, and the automorphism
group of C is just Sym(D), so in particular the cover splits. The fibre group is Z2,
but the binding group is trivial. As these are unequal, this is an example of a
twisted cover.

Example 3. Let V be an infinite-dimensional vector space over a finite field F9,
let V* := V \ {O}, and let PV be the corresponding projective space (which has
as domain the set of 1-dimensional subspaces of V). We regard V* as a structure
with automorphism group GL(V) (the group of invertible linear transformations
V -? V) and PV as a structure with automorphism group PGL(V) (the quotient
of GL(V) by the central subgroup of linear transformations acting as scalars).
The map V* - PV given by v '--> (v) is a cover of PV. The kernel is just the
centre of GL(V) (equal to the group of scalar transformations, isomorphic to the
multiplicative group Fq of F9), and the cover is non-split. The fibre group and
binding group are both F,*.
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Example 4. Let W be the structure in Example 2. We build a non-split cover
r : Cl --+ W with fibre groups Z4 and binding groups Z2. The cover Cl has two
sorts: the set C of Example 2, and also a set C2 such that, for each {a, b} E W,
C2({a, b}) is a 4-vertex digraph which is a cycle. There is also a symmetric binary
relation holding between C({a, b}) and C2({a, b}), such that one opposite pair from
the 4-cycle are joined to (a, b), the other opposite pair to (b, a). This is a free finite
cover with binding groups Z2 and fibre group Z4. It is non-split. Essentially, the
reason this construction exists is that the stabiliser in Aut(W) of an element of W
is isomorphic to Z2 X Sym(w), so in particular has a proper closed normal subgroup
of finite index. The quotient group is cyclic of order 2, and the cyclic group of order
4 is a non-split extension of this. More details, and the general construction, will
be described in the section on free covers (2.1).

All the above examples are totally categorical. We now give an example of an
unstable, non-split no-categorical cover.

Example 5. We describe the imprimitive homogeneous directed graph 0 from
[13]. The vertices of the graph are the points {e2'"° : 9 E Q} of the unit circle in
the complex plane. There is a directed edge from vertex x to vertex y if and only
if the angle at the origin from x to y, measured in a clockwise direction, is strictly
between 0 and 7r. It is shown in [13] that this directed graph is homogeneous (in the
sense that any isomorphism between finite subgraphs extends to an automorphism
of the graph). It is clearly imprimitive: non-adjacent vertices must be diametrically
opposite, so non-adjacency is an invariant equivalence relation (with classes of size
2). Let W denote the set of pairs of opposite vertices and a : Q -p W the natural
map. By 1.4.2 the group E of permutations induced by Aut((5) on W is closed, so
or can be thought of as a finite cover.

It is easy to see that the kernel of the cover has order 2 (the non-trivial element
of the kernel interchanges every point with its opposite). We claim that it is non-
split. Suppose H is a closed subgroup of Aut(Q) of finite index. Then H intersects
every point-stabiliser in a closed subgroup of finite index. But a point stabiliser is
isomorphic to Aut(Q) and this has no proper closed subgroups of finite index (this
follows, for example, from the determination of all normal subgroups of Aut(Q) by
G. Higman in [30]). So H contains the stabiliser of every point of Q and this easily
implies that H = Aut(Q).

It is worth considering what W is here. It is not hard to see that Aut(W) is
highly homogeneous on W, that is, transitive on the set of k-sets from W, for all
k E N (for any k-subset of W take representatives in one half of 0). Moreover,
Aut(W) is 2- but not 3-transitive on W, and has no proper closed subgroup of
finite index. So a theorem of Peter Cameron ([9]) implies that W is the countable
dense circular ordering, that is, the ternary relation Cr on Q defined by:

Cr(x,y,z) --+ (x < y < z)V(y < z < x)V(z < x < y).

We end with another totally categorical example (Example 3 of [4]).
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Example 6. Let G be the abelian group Z(') (the direct sum of No copies of
Z4). This has as socle 2G, the subgroup of elements of order at most 2. Let
W := 2G \ {0}, the infinite dimensional projective space of F2. For each a E W,
let Fa :_ {x E G : 2x = a}/{0, a}. The Fa are the fibres of a cover C --+ W,
with corresponding `binding groups' 2G/{0, a}. Then C is an affine cover of W (a
notion defined in Section 1.3.1), and G is in the definable closure of C. This cover
is non-split.

1.3 Related Notions
There are several notions closely related to finite covers.

1.3.1 Affine covers

We first define a more general notion of cover, which includes finite covers, and
then define affine covers. This is taken from [4], but is implicit in [35].

Definition 1.3.1 A structure M is a cover of W if

(a) W is a 0-definable subset of M,

(b) every relation on W" 0-definable in M is 0-definable in W,

(c) every relation on W" which is definable in M with parameters is defin-
able with parameters in W,

(d) there is a 0-definable surjection 7r : M \ W -+ W,

(e) there is a 0-definable family G. (a E W) of groups (the structure groups)
living in Weq, which act regularly on the fibres M(a) = 7r-1(a), their
action being a-definable in M.

The cover is affine if the fibres are infinite.

Because of the reference to the regular action of the structure groups, this definition
appears to conflict with the earlier definition of a finite cover. However, it will be
shown in Lemma 3.2.1(a) that any finite cover is bi-interpretable with a regular
finite cover, that is, one with regular fibre groups. A regular finite cover can be
regarded as a cover in the above sense, with structure groups adjoined formally.
In these notes, we work with finite rather than affine covers, so can disregard the
structure groups. An example of an affine cover is Example 6 of Section 1.2.

1.3.2 Symmetric extensions

Symmetric extensions form a convenient generalisation of finite covers, developed
by Hodges and Pillay [34].

Suppose that L is a sublanguage of a language L+, and that there is a unary
relation symbol P E L+ \ L. Let M be an L+-structure, and let N denote the
substructure with domain PM = {a E M : M = P(a)} of the reduct of M to
L. In this situation, we say M is a relativised expansion of N. Clearly every
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automorphism of M induces an automorphism of N, and indeed restriction is a
homomorphism p : Aut(M) -* Aut(N). We say M is a symmetric extension of
N if it is a relativised expansion of N and p is surjective. The kernel of the
symmetric extension is kerp = Aut(M/N). If additionally M is algebraic over N
(in the language L+) then we say that it is a symmetric algebraic extension of N.
Clearly, if 7r : C - W is a finite cover (in the sense of Definition 1.1.2) then the
structure (C, W, 7r) is a symmetric algebraic extension of W. If M is a symmetric
extension of N then an expansion Ml of M is called a symmetric expansion of M
if Ml is also a symmetric extension of N.

Certain model-theoretic properties pass from a structure to its covers or sym-
metric extensions. An easy application of the Ryll-Nardzewski Theorem yields
that any finite cover of a countable No-categorical structure is No-categorical. The

following theorem (Theorem 9 of [34]) is a generalisation of this for symmetric
extensions. Its proof uses the Ryll-Nardzewski Theorem and Lemma 1.4.3 below,
together with a syntactical characterisation of the 'one-cardinal' condition.

Theorem 1.3.2 Let M be a countable symmetric extension of N which is one-
cardinal over N (that is, IPM' = IM'I for every M' elementarily equivalent to M).
If N is no-categorical, then so is M.

Corollary 1.3.3 (Theorem 10 of [34]) Let N be totally categorical, and M be
a countable symmetric extension of N which is one-cardinal over N. Then M is
totally categorical.

Proof. There is a strongly minimal formula b in N, and its relativisation ¢(N)
to P is strongly minimal in M. Furthermore, M is one-cardinal over N, and N is
one-cardinal over 4(N), so M is one-cardinal over O(N). It follows from a theorem
of Erimbetov (Theorem 4 of [19]) that M is uncountably categorical. Also, M is
l1o-categorical by Theorem 1.3.2.

Further results of this kind can be found in Kikyo and Tsuboi ([43]).

1.4 Topological arguments

We first record a triviality.

Lemma 1.4.1 Let M be an infinite structure, and P a subset of M invariant under
Aut(M). Let : Aut(M) -- Sym(P) be the homomorphism induced by restriction,
and give Im(j) the topology induced from Sym(P). Then 0 is continuous.

=Proof. Let H := Im(q ). A typical basic open set of H is H(F) = {h E H : h f
f V f E F} for some finite F C P. The preimage of this under is Aut(M/F),
which is also open.

The next result is crucial to our use of topological arguments. In its full gener-
ality it appears as Lemma 1.1 of [24]. It was proved in [27], assuming C countable.
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Lemma 1.4.2 Let C be a permutation structure, W a set, and 7r : C -+ W be
a finite-to-one surjection whose fibres form an Aut(C) -invariant partition of C.
Then

(a) The restriction map y : Aut(C) -* Sym(W) maps closed subgroups of Aut(C)
to closed subgroups of Sym(W).

(b) If it : C -+ W is a finite cover, then the restriction map p sends open subgroups
of Aut(C) to open subgroups of Aut(W), so is an open map.

Proof. We prove the results assuming C is countable.
(a) Let (gi : i E w) be a sequence of automorphisms of C such that (gi : i E w)

converges to h E Sym(W), where gi = p(gi). By continuity of p (see Lemma 1.4.1),
it suffices to show that (gi i E w) has a convergent subsequence. Enumerate W
as W := (wi i E w). By thinning out the gj, we may assume that gi(wj) = gi (wj)
and g,-1(wj) = g2,1(wj) whenever i, i'> j, so in particular C(wj) -> C(hwj)
and gfl 1,92,1: C(wj) - C(h-1wj). It follows by the pigeon-hole principle that for
each j there is infinite I C w such that gi I C(wj) = gi, I C(wj) and yi 1 C(wj) _
g2,1 I C(wj) whenever i,i' E I. Apply this repeatedly to obtain the subsequence.

(b) By a result of Evans [22], the open subgroups of Aut(C) and Aut(W) are
precisely the closed subgroups of countable index, so the result follows from (a).

In the countable case, this result has the following generalisation (Lemma 5 of
[34] ).

Lemma 1.4.3 If M is a countable symmetric extension of N then the restriction
map p : Aut(M) - Aut(N) is open.

Corollary 1.4.4 ([34], Lemma 6) Let M be a countable symmetric extension of
N with restriction map p Aut(M) -* Aut(N) and kernel K. Then the natu-
ral group isomorphism PK Aut(M)/K -j Aut(N) is a homeomorphism (where
Aut(M)/K is given the quotient topology). This is true without the countability
assumption if M arises from a finite cover of N.

Proof. This follows from Lemmas 1.4.1 and 1.4.3 (or 1.4.2).

1.5 Kernels

1.5.1 Kernels of symmetric extensions

We shall discuss kernels in the more general context of symmetric extensions. Sup-
pose that N is a fixed first-order structure and that MO is a fixed symmetric
extension of N (in the context of finite covers, it might be a principal cover or a
free finite cover). Let p : Aut(Mo) -> Aut(N) be the restriction map, and let Iio
denote its kernel. So we have the short exact sequence

1 KO -* Aut(Mo) - Aut(N) --> 1
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of continuous maps, and if MO is countable, or if the symmetric extension arises
from a finite cover, these are also open maps. We consider expansions M of MO
such that p(Aut(M)) = Aut(N) (symmetric expansions). The kernel of such an
M is just K := Aut(M) fl Ko. To classify such expansions of Mo, we must do the
following:

1. Classify those subgroups K of Ko which can occur as kernels.

2. For a given kernel K, classify the expansions M with kernel K such that
p(Aut M) = Aut N.

This is essentially the setting of Ahlbrandt and Ziegler ([3] and [4]) except that they
assume that MO is the principal cover of N with respect to a family of structure
groups (Ga : a E N), and in particular Ko = r[(Ga : a E N).

We begin with an easy observation, important for Corollary 3.3.2. If M is a
symmetric extension of N we say that M is algebraic over N if all orbits of the kernel
Aut(M/N) are finite (this is the group-theoretic analogue of the model-theoretic
condition that every element of M is in the algebraic closure of N). Clearly this
property holds if M arises from a finite cover of N.

Lemma 1.5.1 Let M be a symmetric extension of N, with kernel K. Then

(a) K is closed,

(b) if M is a symmetric algebraic extension of N, then K is compact.

Proof. (a) This follows since K is the automorphism group of the expansion of M
obtained by naming all elements of N. Alternatively, K is the kernel of a continuous
homomorphism.

(b) Since the orbits of K are finite, K is a subgroup of a direct product of
finite groups. By Tychonoff's Theorem the latter is compact, so by (a), K is also
compact.

The connection between M and K is given by the following result. For finite
covers with abelian kernel Lemma 3.1.5 shows that the situation is much more
straightforward if the restriction map p splits.

Proposition 1.5.2 Suppose MO is countable. Let H be a subgroup of Aut(Mo)
such that µ(H) = Aut(N), and let K := H fl Ko. Then H is closed if and only if

(a) K is closed,

(b) the isomorphism µK : H/K -> Aut(N) given by 1 K (hK) = µ(h) for
h E H is a homeomorphism.

Proof. If H is closed, then trivially K = H fl KO is closed (as KO is closed by
Lemma 1.5.1), and µK is a homeomorphism by Corollary 1.4.4. The converse is
proved in Theorem 11 of [34].



12 D. Evans, D. Macpherson, A. Ivanov

A countable No-categorical (or permutation) structure M is said to have the
small index property if every subgroup of Aut(M) of index less than 2x° is open.
Since the small index property gives a characterisation of the open subgroups of
Aut(M), this says that the topology on Aut(M) is determined by the abstract
group structure. It is now known that many l o-categorical structures (for example,
(Q, <), the random graph, and all lto-categorical w-stable structures, and hence all
totally categorical structures) have the small index property (see [31] for the last
two cases and further references). The following extension of Proposition 1.5.2 was
proved in [34]. We are assuming that MO is countable.

Proposition 1.5.3 Suppose that the structure N has the small index property.
Let H be a subgroup of Aut(Mo) such that l.(H) = Aut(N), and suppose that
K := KO n H is closed. Then µK is a homeomorphism. In particular, clause (b)
of Proposition 1.5.2 can be omitted.

Proof. It suffices to show that ILK is open. The open subgroups of H/K form
a base of neighbourhoods of the identity, and are images of open subgroups of H,
so have countable index in H/K. Since µK is an isomorphism, their images have
countable index in Aut(N), so are open by the small index property.

In Section 6, we discuss further the problem of determining the possible abelian
kernels of finite covers of a structure W.

1.6 The model-theoretic context

We discuss some model-theoretic motivation for looking at covers. We concentrate
on the totally categorical case, though some of the ideas apply more generally, and
are used, for example, in the analysis of smoothly approximated structures in [16].
The remarks below are an amalgam of [33], [35] and [36], and in particular [48].
We shall assume familiarity with standard model-theoretic terminology (see [12],
for example).

The class of countable totally categorical structures is closed under taking fi-
nite (and affine) covers. Thus an understanding of the process of taking covers is a
necessary part of an understanding of the fine-detail of this class. However, the con-
nections run much deeper. First, recall the following well-known characterisation
(due to Baldwin and Lachlan [6]).

Theorem 1.6.1 A countably infinite structure M is totally categorical if and only
if it satisfies each of the following three conditions.

(i) Aut(M) has finitely many orbits on Mn for all n E N (this is equivalent to
Ko-categoricity).

(ii) M is non-two-cardinal; that is, whenever M' is a proper elementary exten-
sion of M and q5(x) is a formula with parameters in M with infinitely many
solutions in M,

¢(x)}.
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(iii) M has finite Morley rank (or Cantor-Bendixson rank).

If M is an l o-categorical structure, then a set X C MeQ is strictly minimal if
it is 0-definable, strongly minimal, and there is no proper non-trivial 0-definable
equivalence relation on X. It is easily seen that any strictly minimal set has
doubly transitive automorphism group. There is a classification of strictly minimal
sets, due independently to Cherlin [15], Mills, and Zil'ber [50]. (There is now a
concise model-theoretic proof of this classification, due to Hrushovski [37], and a
self-contained geometric proof due to Evans [21] but, modulo the classification of
finite simple groups, perhaps the simplest is still that due to Cherlin and Mills,
which goes via the classification of finite 2-transitive groups.) The result is this. If
X is a strictly minimal set with automorphism group G, then one of the following
holds.

1. X is a pure set, and G = Sym(X) (the disintegrated case).

2. X = PG(V) (projective space over an infinite dimensional vector space V
over a finite field F9) and PGL(No, q) < G < P I L(31o, q) (the projective case)

3. X = AG(V) (affine space over V as above) and AGL(No, q) < G < A r L(No, q)
(the affine case).

The strictly minimal sets of types (1) and (2) are said to be modular, since the
familiar dimension formula

dimA+dimB=dimAtlB+dimacl(AUB)

holds for any two algebraically closed sets. Affine strictly minimal sets are locally
modular, since when we localise (name a point v, and factor out the relation of being
inter-algebraic modulo v) we obtain a modular strictly minimal set (projective
space). It is important that one can also pass from an affine space to a modular
strictly minimal set without naming a parameter: form a projective space over the
same field, whose points are parallel classes of lines of the affine space. We state
now a crucial theorem from [15] (a consequence of their Coordinatisation Theorem,
together with Shelah's Finite Equivalence Relation Theorem).

Theorem 1.6.2 If M is a countable totally categorical structure, then there is a
0-definable strictly minimal set in MeQ.

By the above remarks, the strictly minimal set can be assumed to be modular.
It is also shown in [15] that given any two modular strictly minimal sets in M
there is a unique 0-definable bijection between them (this can be proved from the
non-two-cardinal property by a group-theoretic argument).

If P, Q are 0-definable sets in Meq we define Q to be a precover of P if there
are

(a) a partition of Q \ P into a 0-definable family {Ha : a E P},
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(b) a 0-definable family {G5 : a E P} of groups (the structure groups) living
in Peq,

(c) a regular a-definable action of each Ga on Ha.

The precover is finite if the structure groups are finite. Thus essentially a precover
is like a cover except that the fibres correspond to tuples in the base structure, not
singletons.

Finally, we recall a key result from [15], the following consequence of the Coor-
dinatisation Theorem for totally categorical structures.

Theorem 1.6.3 For every a E Meq there is a sequence ao, ... , an = a such that
each ai lies in acl(a) and each type tp(ao/0), tp(ai+i/ao...ai) is algebraic or
strictly minimal.

We now state Zil'ber's `ladder theorem.'

Theorem 1.6.4 (Zil'ber) Let M be totally categorical. Then there is a 0-definable
modular strictly minimal set D and a sequence

D = Mo C Mi C ... C Mn

such that each Mi+i is a precover of Mi and M is in the definable closure of Mn.
Furthermore if D is disintegrated then all the precovers are finite, and if D is a
projective space over F9, then all the structure groups are finite or F9-vector spaces,
and the structure groups live in Deq.

It follows that any totally categorical structure can be built from a 0-definable
modular strictly minimal set by a sequence of covers of Grassmannians. A proof of
Theorem 1.6.4, and the analogous result in the uncountably categorical case, can
be found in [51]. By Theorems 1.6.3 and 1.6.2, and the classification of strictly
minimal sets, the key observation in the proof of Theorem 1.6.4 is the following:

If c E M4_1, a E M, and tp(a/c) is algebraic or strictly minimal, then
there are precovers Mi of M2_1 and Mi+i of Mi, each of the required
kind, such that a E dcl(Mi+i).

Details can be found at the end of Section 3 of [48].

Via an analysis of covers, Hrushovski [36] gave a detailed structure theory for
the class D of totally categorical structures whose co-ordinatising strictly minimal
set is disintegrated. Any member of V is in the algebraic closure of such a strictly
minimal set (this follows essentially by Theorem 1.6.4 and the fact that no infinite
group can be interpreted in such a structure). He explicitly described the members
of a certain subclass C of D, and then showed that any member of D can be
expanded to a member of C by naming finitely many constants.

An analogous program was developed in [27] for non-disintegrated totally cate-
gorical structures. The results there apply in many unstable situations, but one of
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the more quotable theorems is the following (Theorem 3.2 of [27]). The connection
with our context is that the intermediate structures (the M2 and MM,o) arise from
a sequence of cover-like constructions (Mi is, in some sense, a free finite cover over
MM,o). The proof involves an analysis of finite covers with finite kernels of modular
strictly minimal sets.

Theorem 1.6.5 Let M be a countable totally categorical structure of Morley rank
n which lies in the algebraic closure of a 0-definable modular strictly minimal set.
Then there are 0-definable subsets

Mo,DCM1,0CM1 CM2,0C...CMn,0CMn

of Meq such that

(a) MO is finite, aclq(o) = dcleQ(Mo), and M2 has Morley rank i,

(b) Aut(Mi,o/Mo U D) is nilpotent by finite-abelian,

(c) for 2 < i < n, Aut(MM,o/M2_1) is nilpotent, and for 1 < i < n,
Aut(M2/MM,o) is a direct product of finite groups,

(d) M C Mn.D

1.7 An overview

So far, apart from the results of Ahlbrandt and Ziegler ([3, 4]), most of the successes
have been with finite rather than affine covers, and for the remainder of these notes
we will be concerned mainly with finite covers of countable No-categorical structures
(although we often present results in more generality). The material is, for the most
part, taken from the papers of Ahlbrandt and Ziegler ([3, 4]), Evans ([23, 24, 25]),
Evans and Hrushovski ([27]), Hodges and Pillay ([34]), Ivanov ([38, 39]), and Ivanov
and Macpherson ([40]). Some of the material does not appear elsewhere. The
material on free covers (Section 2.1), and the presentation of Pontriagin duality
(Section 6.3) is due to Evans, but is undoubtedly well-known to others.

Recall that the main problem is:

The Cover Problem: For a given No-categorical structure W, de-
scribe its finite covers.

We are usually satisfied with only a partial solution to this for any particular
W. Indeed, the only W for which a complete solution is known are the highly
homogeneous structures (see Section 3.1.3, for results due to Ivanov [39] and Ziegler
[48]). The successes of the the theory have been in proving splitting results (showing
that for certain W all finite covers split), and describing finite covers with finite or
abelian kernel.

The results which we present can be divided into three types.

1. Constructions: describing abstract covering constructions which generalise
familiar examples.
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2. Reduction theorems: reducing the analysis of finite covers to that of simpler
kinds.

3. Classification results: classifying finite covers of certain familiar l 0-categorical
structures.

The constructions in Section 2 show how non-split finite covers can arise from
non-split finite extensions of finite homomorphic images of point stabilisers (Lemma
2.1.5) and, more subtly, from combinatorial properties of 0-definable binary and
ternary relations on W (Sections 2.2 and 2.3). In these latter cases the kernels of
the covers are finite.

The main reduction result is that any finite cover has a minimal covering ex-
pansion, the kernel of which is nilpotent (Corollary 3.3.2 and Lemma 3.3.4). It
then follows that the splitting problem reduces to consideration of finite covers
with abelian kernel (Corollary 3.3.5). For structures with trivial algebraic closure
the situation is more straightforward, and one can reduce to consideration of finite
covers with finite kernels (Theorem 3.5.1). Classification results for finite covers
with finite kernels are given in Section 4.

To analyse finite covers with abelian kernel we use cohomological methods first
introduced into this subject by Ahlbrandt and Ziegler ([41, and Section 6 here).
These methods have been used (together with results from representation theory
and cohomology of finite groups) to give very precise information about finite covers
of Grassmannians of strictly minimal sets (see Sections 6.3.2 and 6.5), as well as
information which is rather more qualitative (cf. Theorem 7.2.11). They can also
be used to provide information about finite covers with finite kernels (Section 7.2).

2 General constructions

2.1 Free covers

2.1.1 Existence and Uniqueness

Suppose ir : C ---r W is a finite cover. Then we have the following data:

the base structure W

for every w E W, the fibre group F(w) = Aut(C(w)/w)

for every w E W, the binding group B(w) = Aut(C(w)/W).

Here, B(w) is a normal subgroup of F(w), and these should both be regarded as
permutation groups on the fibre C(w) = a-1(w).

First, we indicate what is needed to ensure that there is some finite cover with
the given data.

Lemma 2.1.1 Suppose it : C -+ W is a finite cover. Then, for every w E W,
there is a continuous epimorphism Xw : Aut(W/w) - F(w)/B(w).
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Proof. Let g E Aut(W/w). Then there exists h E Aut(C/w) which extends
g. Suppose h' also extends g. Then h-1h' E Aut(C/W) and so (hIC(w))B(w) _
(h'JC(w))B(w). So if we define Xw(g) = (hIC(w))B(w), we get a well-defined
homomorphism Xw : Aut(W/w) -+ F(w)/B(w), which is clearly onto. To see that
Xw is continuous, note that its kernel consists of those g E Aut(W/w) which extend
to an element of Aut(C) inducing an element of B(w) on C(w). Thus ker Xw is
the image (under the restriction map Aut(C) -* Aut(W)) of an open subgroup of
Aut(C). By 1.4.2, this implies that kerXw is an open subgroup of Aut(W/w). As
F(w)/B(w) is finite, this means that X , is continuous.

We refer to the epimorphisms Xw as the canonical homomorphisms of the cover.

Recall that a finite cover ir : C --> W is free if (with the above notation)

Aut(C/W) = fl B(w).
wE W

The next lemma (which we include for completeness, but which we shall not really
use), shows that free covers are completely determined by the fibre and binding
groups, together with the canonical homomorphisms. The existence part comes
from [23] (Lemma 4.4), but it is really just an elaboration of the construction of
free covers in [36]. The reader might find it useful to refer back to Example 4
in Section 1.2 of the free cover with fibre group Z4 and binding group Z2 of the
Grassmannian of 2-sets from a disintegrated set.

Lemma 2.1.2 Let W be a transitive permutation structure and F a permutation
group on a finite set X. Let wo E W, suppose B is a normal subgroup of F and
suppose X : Aut(W/wo) -+ F/B is a continuous epimorphism. Then there exists a
free finite cover a : M -+ W with fibre and binding groups at wo equal to F and B,
and such that the canonical epimorphism Xwo from 2.1.1 is equal to X. With these
properties, o is determined uniquely (up to isomorphism over W).

Proof. The proof is in a series of steps. The notation is cumulative.
Step 1. Let C be the set of (left) cosets of kerX in Aut(W). It is easy to show

that the group of permutations which Aut(W) induces on this is closed, and so we
may consider C as a permutation structure with automorphism group isomorphic
to Aut(W). Furthermore, the map g : C -+ W given by q(gkerX) = gwo is a finite
cover with trivial kernel.

Step 2. Let Z = C(wo) and consider Y = X U Z as a finite (permutation)
structure with F as its automorphism group: the action of f E F on c E Z is given
via X as f (c) = (X-1(f B))(c). For each w E W let gw E Aut(W) be such that
gww = wo (and suppose gwo is the identity). Then gw maps C(w) to Z and so
induces an embedding Qw : C(w) -+ Y.

Step 3. We now build a finite cover o' : M' -+ W, which we describe as a
first-order structure.
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The domain of M' is the disjoint union of W, C and W x Y. The structure on
M' consists of a' : M' -+ W, which is made up of the identity map on W, on
C, and the projection map to the first coordinate on W x Y. We also have an
injection r : C -+ W x Y given by r(c) = (il(c), o,l,l(c)) (so r has image W x Z).
The remaining structure on M' is made up of the original structures on W and C,
and for each n-ary relation R on Y we have an n-ary relation R+ on W x Y given
by

R+((wl, yl ), , (Wn, yn)) if wi = wj for all i, j and R(yl, ... , yn )
To show that a' : M' - W is a finite cover, it will suffice to show that any

automorphism of C extends to an automorphism of M'. So let g E Aut(C) and
w E W. Then g induces (via r) a bijection from {w} x Z to {gw} x Z, and so an
automorphism of Z. This extends to an automorphism a(w, g) of Y. If we also
denote by a(w, g) the induced map from {w} x Y to {gw} xY, then gUUwEw a(w, g)
is an automorphism of M' extending g.

Step .¢. Note that Aut(M'/C) = HwEw Aut({w} x Y/{w} x Z). Let a be the
restriction of a' to M = W x X C M' considered as permutation structure with
Aut M' acting. Then a : M -+ W is a free finite cover with the required data at
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Clearly there is equality in the first coordinate here. For the second:

g,,(c)(c)

IIh, (c)he

an(hc)(he),

as required.
So the cover v embeds in the cover a' with image M, and the map p induces

an embedding of Aut(N) into Aut(M). Thus M can be regarded as a reduct of
N. But N is free with the same binding groups as M and so it follows that M can
have no more automorphisms than N.

In practice, what we shall use is the following, which shows that any finite cover
is an expansion of a free finite cover with the same data.

Lemma 2.1.3 Every finite cover it : C --f W is an expansion of a free finite
cover with the same fibre groups, binding groups and canonical homomorphisms as
in 7r.

Proof. This can be deduced from the proof of 2.1.2, but we give a quicker,
independent proof.

77
Let r = Aut(C) and K = Aut(C/W) and B(w) = Aut(C(w)/W). Let H =

MEW B(w) < Sym(C). We claim
(i) H is normalised by r;
(ii) Ht is a closed subgroup of Sym(C);
(iii) HT is the automorphism group of a free finite cover iro : Co -> W which

is a reduct of C.

Here, (i) is routine; (ii) follows from (i) and compactness of H (cf. the proof of
3.1.4), and (iii) follows immediately from (ii).

As Aut(Co) = HI', it follows that the binding groups of it and iro are the same.
Also, for any w E W we have

Aut(Co(w)/w) = (HIC(w))(I'IC(w)) = Aut(C(w)/w)

so the same is true of the fibre groups. The definition of the canonical homomor-
phisms shows that they coincide in it and 7ro.

2.1.2 Splitting

We prove the following. For free covers with abelian kernel, Shapiro's lemma (7.1.4)
provides a more precise analysis.

Lemma 2.1.4 Suppose W is a transitive permutation structure and it : M --* W
a free finite cover with fibre group F and binding group B. If F splits over B then
the cover it also splits.
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Proof. Let w E W. By 3.2.1 we may assume that the fibre group F(w) acts
regularly on M(w). Let H(w) be a complement to B(w) in F(w) and let T(w) be
an H(w)-orbit. This is a transversal of the B(w)-orbits on M(w). For each w' E W
choose in M(w') an Aut(M)-translate T(w) of T(w) and let T be the union of
these. Let T be the setwise stabiliser in Aut M of T.

We claim that T is a complement to the kernel of it in Aut(M). By regularity,
it is enough to show that any element g of Aut(W) extends to an element of T. Let
g E p-1(g) and for each w' E W choose an x,,, E T(w'). So gx,,,, E M(gw'). For
each w' E W there is a k,,,, E Aut(M(gw')/W) such that k,,, gx,,, E T(gw'). As it
is a free cover it follows that there exists k E Aut(M/W) such that kgx,,, E T(gw')
for all w' E W. It will suffice to show that y' = kg E T. Note that p(g') = g and
g' has the property that it sends each x,,,, to an element of T. Let x' E T(w') and
suppose g'x' T(gw'). Let f E Aut(M) send T(w') to T(gw'). So, if h = f
then h E Aut(M/w'), hx,,,, E T and hx' 0 T. But by regularity, there is a unique
element of F(w) taking x,,,, to x', and this stabilises T(w'). This is a contradiction.
11

The following is a variation on Theorem 4.5 of [23]. It may be possible to
improve on this: indeed, it may be that the converse of 2.1.4 is true.

Lemma 2.1.5 Let W be a transitive permutation structure. Let w E W and let
Aut°(W/w) be the intersection of the closed subgroups of finite index in Aut(W/w).
Suppose that G = Aut(W/w)/ Aut°(W/w) is finite and non-trivial. Then there
exists a non-split free finite cover of W.

Proof. We need the following fact from finite group theory (see Remark 2.1.6
below): there exists a non-split finite extension of G

1- B->F->G-+1

(in fact, B can be taken to be elementary abelian). Now construct a free finite cover
a : M -+ W using 2.1.2, where the fibre group is F (in its regular representation)
and binding group B and the kernels of the canonical homomorphisms are the
groups Aut°(W/w). Suppose, for a contradiction, that H is a closed complement
to K = Aut(M/W). Thus Aut(M) = KH, and Aut(M/w) = KH,,,, where H.
denotes the stabiliser in H of w. Restricting this equation to M(w) we get that
F = BT where T is the restriction of H,,, to M(w). Thus ITS > IF/BI = JGI. But
T is a finite, continuous homomorphic image of H,,,, and the restriction map gives
an isomorphism from H,,, to Aut(W/w), so ITI < IGJ. Thus ITI = IGI and T n B is
the identity subgroup. So F splits over B, a contradiction.

Remark 2.1.6 The `fact' about finite groups we used in the above is well-known
(cf. [17], p. 211), but we can give a self-contained proof of it using the construction
of free covers (which, of course, works also for finite permutation structures). In
the notation of the proof of 2.1.5, let p be a prime dividing IGI and X < G a
subgroup of order p. Let W1 be the set of left cosets of X in G with G acting (it
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is not important here that this action might not be faithful). Let wo = X. Form
a free finite cover ir1 : Ci -+ W1 with fibre group Z,,2 and binding group Zp and
with X as the domain of the canonical homomorphism at wo. We claim this is
non-split (and so Aut(Ci) is a non-split extension of G by an elementary abelian
p-group). As in the proof of 2.1.5, if 1r1 is split then the fibre group at wo is the
product of the binding group at wo with a homomorphic image of X. But this is
clearly impossible.

2.2 Digraph coverings

In this section we summarise the theory of coverings of digraphs, as developed in
[23]. This will provide us with examples of finite covers with finite kernels. The
construction is very closely related to the topological notion of a covering space. In
a later section (Section 4) we shall see that for some structures, digraph coverings
give all of the non-split finite covers with finite kernels.

Definition 2.2.1 (i) A digraph on a set L is an irreflexive binary relation (usually
denoted R) on L which is either a symmetric relation, or an antisymmetric
relation. If (L, R) is a digraph and a E L, put

a+ := {a E L : R(a, a)}

and

a- := {a E L : R(a , a)}.

A path in (L, R) is a sequence xo,... , x, such that for each 0 < i < n -
R(xi, xi+1) or R(xi+1, xi) holds. The digraph is connected if any two vertices
are linked by a path.

(ii) Let S denote the set of paths in L. We say that P1,P2 E S are elementarily
homotopic if one can be obtained from the other by one of the following
operations (elementary homotopies):

(a) replace a consecutive triple abc with R(a, b), R(b, c), R(a, c) by ac,
(b) replace a consecutive triple abc with R(b, a), R(c, a), R(c, b) by ac,
(c) replace a consecutive triple aba by a.

Two paths are homotopic if one can be obtained from the other by a sequence
of elementary homotopies. This is an equivalence relation on S, and the
homotopy class of p is denoted [p]. A connected digraph is simply connected
if any two paths with the same endpoints are homotopic.

(iii) Let (A, R), (B, R') be two digraphs, both symmetric or both antisymmetric.
A map a : A - B is a homomorphism if, for every b, b' E Im(a), we have
R'(b,b') if and only if there are a, a' E A such that R(a, a') and a(a) = b,
a(a') = Y. A surjective homomorphism a : A -> B is a covering of digraphs
if, for each a E A, a induces digraph isomorphisms a+ a(a)+ and a- -+
a(a)-.
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(iv) Let (L, R) be a connected digraph, fix xo E L, let P denote the members of
S which start at xo, and U be the corresponding set of homotopy classes.
Define a:U -+Lby

a([xo...x,.]) = xr.

We can make U into a digraph with edge relation S (and a into a covering)
by putting S([pi], [p2]) if and only if R(o([pj]), a([p2)) and [p2] = [pla([P2])].
We call a : U -+ L the universal covering of L.

It is shown in Lemma 5.3 of [24] that a universal covering a : U -+ L is indeed a
covering, that it has the expected universal property with respect to all coverings
of L, and that it is simply connected and indeed is up to isomorphism the unique
simply connected covering of L.

With a : U -> L as above, let r(L, R) denote the subgroup of Aut(U) which
maps fibres of or to fibres of a. The induced map F(L, R) -+ Aut(L) is surjective
and its kernel 0(L, R) has the following characterisation. Fix xo E L as above,
and let p = [xo ... xrxo] E a-1(xo). Define the deck transformation dp : U --+ U by

dp([xoxi ... x' I) = [xo ... xDxoxi ... x'].

Then 0(L, R) is the set of all deck transformations. Taking `quotients' of a by
normal subgroups of finite index in A gives finite covers of L with finite kernels
(see the `converse' part of the statement of 1.14 in [24], or Corollary 4.2.3 here, for
a precise formulation). We illustrate this with the following example, taken from
[23].

Example 2.2.2 Among the homogeneous directed graphs there is a tournament
(that is, a digraph such that between any two vertices there is a directed edge)
which can be described as follows. Let the vertex set of D be any countable dense
subset of the unit circle, with no two antipodal points. Put x -+ y if it is faster to
go clockwise from x to y than to go anticlockwise. For example, take D as having
vertex set

{e'B : 0 E Q fl [0, 2ir)x},

in the complex plane, with an edge e'0' -+ ei02 if and only if the angle at 0 subtended
by the circular arc from e'01 to e'02 is less than 7r. The finite covers of D with finite
kernels can be described in terms of quotients of the universal covering r : V D,
in a natural sense. The domain of V may be considered as the subset

{2irn + q: n E Z, q E Q fl [0, 2ir)z}

of R, and there is an arc x --+ y in V if and only if 0 < y - x < ir. It is easily
seen that V is simply connected. Let r : V -+ D be the map x H e'". Observe
that r is surjective, and that u -+ to in D if and only if there are x, y E V such
that r(x) = u, r(y) = w, and x y. Then r is a covering, and so is the universal
covering of D.
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For any n E N, let Vn be the set of cosets V/21rnZ in the additive group R/21rnZ,
with the natural map vn : V Vn. The map r factors through vn to give a finite-
to-one map r,, : Vn - D. Now, vn induces a digraph structure on Vn (we have
u -> win V, if and only if there are x, y E V with x -> y and vn(x) ='a, vn(y) = w)
together with an equivalence relation (the fibres of rn). Then rn is a non-split finite
cover of D, and its fibre groups and binding groups are isomorphic to Zn.

Note that the group 0(V, -+) is isomorphic to Z. The kernel of rn is a natural
homomorphic image of this group.

2.3 Coverings of two-graphs

A two-graph T on a set X is a set of 3-subsets of X with the property that, for any
4-set Y C X, an even number of the 3-subsets of Y belong to T. Given any graph
on X with edge set R, the set of triples carrying an odd number of edges of R is
a two-graph on X. Any two-graph (X, T) arises in this way: let x E X and take
as R the set of {y, z} such that {x, y, z} E T. The operation of switching a graph
on X with respect to a partition of X into two parts replaces all edges between
the parts with nonedges and all nonedges with edges, leaving edges and nonedges
within each part unaltered. Any pair of graphs on X give the same two-graph if
and only if they he in the same switching class (that is, each can be obtained from
the other by switching). See [10] for more details.

Any graph (X, R) determines a 'double covering' (X*, R*) of the complete graph
on X as follows (this is not a cover or covering in any of the senses we have
previously used, hence the quote marks). Let X* = {x+,x- : x E X}, where
(x+, y+), (x-, y-) E R* if and only if (x, y) E R, and (x+, y-), (x-, y+) E R* if
and only if (x, y) is not in R (in [10] the `double covering' is considered under
the complement of our R*). Under R* the transversals X+ and X- are copies
of WO = (X, R). Switching corresponds to interchanging the labels x+ and x-
for some points x ([10]). So we can identify the set of switching operations with
F2 /F2 (that is, characteristic functions modulo 2 of subsets of X, factored out by
the constant functions to identify a set and its complement).

The triples from X inducing two triangles in the double covering form the two-
graph T corresponding to R. It is easily seen that M = (X*, R*) is a cover of
W = (X, T) under the natural map 7r : X * -+ X. Indeed, if a E Aut(W) then
the graphs (X, R) and (X, aR) are in the same switching class so there exists
k E F2 such that ka E Aut(M) (where, of course, we define a(x+) = (a(x))+
etc.). Moreover, the kernel of it is of order 2 (the non-identity element interchanges
x+ and x- for every x E X).

We can now produce several non-split covers. The most natural one is built in
the following way.

Example 2.3.1 Let (X, R) be the countable, universal, homogeneous graph (the
`random graph'). Let W = (X, T) be the corresponding two-graph, and let 7r :

M -p W be the double cover constructed as above, with M = (X*, R*). We show
that this does not split.
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Let G = Aut(W). Let x E X and Y = {y E X : (x, y) E R}. Switching
with respect to Y we get a graph on X with x as an isolated vertex and a copy of
the random graph on X \ {x}. It follows that G is transitive on W and Gx, the
stabiliser in G of x, is isomorphic to the automorphism group of the random graph
(on X \ {x}). In particular, G acts 2-transitively on X and point stabilisers have
no proper closed subgroups of finite index.

Suppose, for a contradiction, that it splits. Let H be a closed complement to
Aut(M/W) in Aut(M). So H is the automorphism group of a trivial covering
expansion of a. By Lemma 2.1.1 and the previous paragraph, the fibre group of
this covering expansion is trivial, and so H has two orbits on X *, and acts 2-
transitively on each of these. This implies that either (X*, R*) or its complement
is bipartite. But neither of these is the case: it is easy to see that both the complete
graph and the null graph on three vertices can be embedded in (X*, R*). This is
the contradiction, and so a is non-split. (We will give a different explanation for
the non-splitting in Section 6.6.)

The notion of a switching presentation in [39] is a generalisation of this con-
struction. It allows us to build non-split covers in several other cases. A typical
example of this kind is as follows.

Example 2.3.2 Let (W, Cr) be the countable dense circular ordering and < be an
order on W inducing Cr (see Example 5 in Section 1.2). For a set A = {al, ..., ak}
we construct a cover it : W x A -+ W by defining a circular order on W x A. First,
extend the natural orders < on all W x jai} as follows:

Wx{al}<Wx{a2}<...<Wx{ak}.

Now take the corresponding circular order CrC on W x A. This relation and the
projection it define a non-split transitive cover of (W, Cr) with the kernel isomorphic
to Zk. It is shown in [39] that all finite covers of (WC r) may be considered as
reducts of tuples of such covers.

A circular order is an example of an oriented two-graph (see p.117 in [10]). More-
over, Example 5 of Section 1.2 just describes the corresponding double covering of
the dense circular ordering (notice that this is the above example for A consisting
of two elements). This slightly explains why the examples of this subsection are
amalgamated in a general construction in [39].

3 Reductions and special classes of covers
3.1 Split covers

Recall that a finite cover it : C - W splits if there is a closed complement to
Aut(C/W) in Aut(C). Equivalently, there is a covering expansion of x with trivial
kernel. Thus to determine the split covers of W we need first to describe the trivial
finite covers.
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3.1.1 Trivial covers

Suppose W is transitive. Let w E W and let H be a closed subgroup of finite
index in Aut(W/w). Let C be the set of left cosets of H in Aut(W). The group
of permutations induced by Aut(W) on this (by left multiplication) is closed and
it : C - W given by zr(gH) = gw (for g E Aut(W)) is a transitive finite cover of W
with trivial kernel and fibre group isomorphic to the group of permutations induced
on the cosets of H in Aut(W/w) by Aut(W/w). It is easy to see that any transitive,
trivial finite cover of W is isomorphic (over W) to such a coset space (take H as
the stabiliser of a point in the fibre above w). In particular, if Aut(W/w) has no
proper closed subgroup of finite index then any trivial finite cover it : C --+ W
has the property that each Aut(C)-orbit intersects each fibre of it in exactly one
element. The following terminology is introduced in [39].

Definition 3.1.1 Let W be a permutation structure. The finite cover it : C -> W
is strongly split if there is a covering expansion in which all fibre groups are trivial.

Using this terminology, the above remarks give:

Lemma 3.1.2 If W is a transitive permutation structure then all split finite covers
of W are strongly split if and only if Aut(W/w) has no proper closed subgroup of
finite index (for w E W).

Example 3.1.3 Let k > 2 and let W be the Grassmannian of k-sets from a disin-
tegrated set (see Section 1.1.1). Let w E W and note that Aut(W/w) has a closed
subgroup of index 2 (those elements inducing an even permutation on the set w).
Thus we get a trivial finite cover it : C -+ W with fibres of size 2 and fibre group
cyclic of order 2. This has a reduct ao : Co - W which is free and has kernel Zr'
(this is Example 1 of Section 1.2). Clearly this is strongly split, and so there are
at least two isomorphism classes of trivial covering expansions of 7ro.

3.1.2 Kernels of split covers

Lemma 3.1.4 Suppose C, W are permutation structures and it : C - W is a split
finite cover with kernel K. Let T be a closed complement to K in Aut(C). Then
any closed subgroup H of K which is normalised by T is a kernel of some split
covering expansion of it.

Proof. Let r = Aut(C). Then TH is a subgroup of r whose intersection
with K is H. The lemma follows once we have shown that TH is actually a
closed subgroup of r (because the covering expansion we want can be taken to
have automorphism group TH). This is a general fact about topological groups.
The map r x K -> I' X K given by (g, k) H (gk, k) is a homeomorphism, and
compactness of K implies that projection onto the first coordinate in r x K is a
closed map. So the image of T x H under the composition of these maps is closed
in F.
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Note that if K in the above is abelian then any subgroup of K which is nor-
malised by T is actually normal in Aut(C). Combining this observation with
Lemma 2.1.4 we obtain:

Lemma 3.1.5 Let a : C -> W be a free finite cover with abelian kernel in which
the fibre groups split over the binding groups. Then a subgroup K of Aut(C/W)
is the kernel of some covering expansion of it if and only if K is a closed normal
subgroup of Aut(C).

As a special case of this we get the following result. Lemma 2.1 of [4] gives a
proof of this for all principal covers (not just finite covers) with abelian kernel.

Proposition 3.1.6 Suppose 7r : MO - N is a principal finite cover of N with
abelian kernel KO. Then

(i) 7r is split;
(ii) conjugation in Aut(Mo) gives an action of Aut(N) on Ko;
(iii) with this action, a subgroup K of KO is the kernel of a covering expansion

of MO if and only if the following hold.

(a) K is invariant under Aut(N),

(b) K is closed in K0.

Proof. (i) As the cover is principal, all fibre and binding groups are equal, so
this follows from 2.1.4 (the transitivity assumption on the base structure is not
essential).

(ii) This follows from the assumption that KO is abelian (cf. 6.2.1).
(iii) This follows from the above and Lemma 3.1.5.

3.1.3 Specific examples

We consider the case where W is the rationals considered as an ordered set. Suppose
it : C -> W is a finite cover. Note that as Aut(W) is transitive on W all fibres have
the same size (n, say) and all the fibre groups are isomorphic to a subgroup F of
Sym(n). It follows from 2.1.1 and the fact that Aut(W/w) has no proper closed
subgroups of finite index (for w E W) that it is untwisted and so is an expansion
of a free (indeed, principal) cover iro : Co --> W with fibre group F. In other
words, Aut(C) can be identified with a closed subgroup of the wreath product
Aut(Co) = F Wrw Aut(W). It is shown in [39] that it must be split (see also
Theorem 4.3.5 and Theorem 5.1.4 here) and so by the above remarks is strongly
split. Thus we may assume Aut(C) = KG where K = Aut(C/W) and G is the
natural copy of Aut(W) inside the above wreath product. So the cover problem is
reduced to describing the possibilities for K. But these are precisely the closed G-
invariant subgroups of Aut(Co/W) = Fi"1' (by Lemma 3.1.4). The following result
from ([39], Theorem 2.10) determines these precisely. A similar result for finite
covers of a disintegrated set was obtained previously by Martin Ziegler ([49]).
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Lemma 3.1.7 With the above notation, let w E W and let

H={f(w): f EK,f(w)=1Vw #w}.

Then H is independent of the choice of w, and is a normal subgroup of F. The
kernel K is equal to

KH = If E FW : Vx, y f(x)H = f(y)H}. 0

Of course, every normal subgroup H of F gives rise to such a kernel. It is also
shown in [39] that these are the only possibilities for kernels if W is any highly
homogeneous structure (that is, Aut(W) is transitive on the set of k-sets from W,
for all finite k). Essentially, the reason is that any such W is a reduct of the
rationals, by a theorem of Peter Cameron [9]. Furthermore, it is a consequence of
the main results of [38] that no new kernels can be obtained if we consider binary
expansions of a principal cover of a strictly minimal set. However, a projective
space admits finite covers with more complicated kernels (see particularly Section
6.3.2) and the general problem of the description of the kernels of finite covers of
strictly minimal sets is still open, although much can be said for abelian kernels
(cf. Section 6.3.2).

3.2 Regular covers and simple covers

We shall say that a finite cover 'r : C W is regular if the fibre group at each
w E W acts regularly on C(w) (that is, transitively and with trivial point stabiliser).
The following lemma (Lemma 1.8 of [27]) enables us for some purposes to reduce
to considering only regular covers. The second part enables us sometimes to reduce
to the case when the fibre groups are simple. We say a cover ir' : C' -> W factors
through 7r if there is a map 7r* : C' , C such that 7r' = 7ror*. The hypothesis below
that W is transitive will not be unduly restrictive, because of Lemma 1.1.1.

Lemma 3.2.1 Let W be a transitive permutation structure and 7r : C -> W a
finite cover.

(a) There is a regular finite cover 7r' : C' -> W which factors through a,
with Aut(C) = Aut(C').

(b) If 7r is a regular finite cover with fibre group G(w) := Aut(C(w)/w) and
H < G(w) then there is a permutation structure C/H and finite covers
7r, : C - C/H and ire : C/H -> W such that it = ir2Tr1i the fibre group
of ir1 is isomorphic to H, and that of 7r2 isomorphic to G(w)/ f(gHg-1
g E G(w)).

If W and C are countable No-categorical structures then C/H is a sort in Ce9 and
x1 and ir2 are 0-definable in C.

Proof. (a) Let w E W, let b be an enumeration of C(w), and let C' be the orbit
of b under Aut(C). The group of permutations induced by Aut(C) on C' is closed.
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Let x1 : C' - C be the map taking each element of C' to its first coordinate. Then
7r = xx1 has the required properties.

(b) Fix w E W, pick c E C(w) and let A be the H-orbit of c and C/H the set of
Aut(C)-translates of A. Then C/H is an Aut(C)-invariant partition of C refining
that given by 7r. Again, the group of permutations induced on C/H by Aut(C)
is closed. Define, for C' E C, 7r1(c') to be the translate A' of A containing c', and
7r2(A') to be the element w' such that A' C C(w').

With the above notation, it follows that if 1 = Nl < < N,, = G(w) is a
composition series of G(w) then C , C/N2 -> - W is a factorisation of 7r into
regular finite covers with simple fibre groups N21N1,...,N,,,/N,,,,_1 respectively.
We refer to a finite cover where all the fibre groups (and hence all binding groups)
are simple as a simple finite cover. We now give some results due to E. Hrushovski
on the possibilities for the kernels of such covers. These are taken from [27].

Definition 3.2.2 Let 7r : C -i W be a simple finite cover in which all the binding
groups are isomorphic to a simple group G. Suppose w, w1, ..., w, E W. We
say that w depends on w1, ..., wn (in the cover pregeometry determined by ir) if
Aut(C(w)/W U U 1 C(wi)) is trivial. Write wECwi to indicate that w depends
on wl in the pregeometry.

Note that Aut(C(w)/W U U 1 C(wi)) is a normal subgroup of Aut(C(w)/W)
so is either trivial or Aut(C(w)/W). The following is from ([27], Lemma 5.7 and
Theorem 5.8).

Theorem 3.2.3 With the notation as in the above definition:
(i) The dependence relation is Aut(W) -invariant and satisfies the exchange con-

dition.
(ii) The relation EC is an equivalence relation.
(iii) If G is abelian and w depends on w1,. .., wn then the equivalence class

wIEC is stabilised by Aut(W/w1, ..., wn).
(iv) If G is non-abelian and w depends on wl,... , wn then w depends on wi for

some i E {1,...,n}.

Proof. (i) Invariance under Aut(W) is clear. Suppose w depends on w1i...,wn
and w', but not on W I ,- .. , wn. For the exchange condition, we must show that w'
depends on w1, ... , wn, w.

Let G1 = Aut(C(w)/W U u 1 C(wi)), G2 = Aut(C(w')/W U U= 1 C(wi)) and
H = Aut(C(w) U C(w')/W U u 1 C(wi)). Then G1 and G2 are isomorphic to G.
Moreover H < G1 x G2 projects onto both coordinates, and the kernel of projection
onto the second coordinate is trivial. So H is isomorphic to G, and it follows that
the kernel of projection onto the first coordinate is trivial, which is what is required.

(ii) This follows immediately from (i).
(iii) Let g E Aut(W/wl,..., wn) and w' = gw. We must show that w'ECW. Let

E Aut(C) extend g. Then conjugation by shows that
n n

Aut([J C(wi)/W U C(w)) = Aut(U C(wi)/W U C(w')).
i=1 i=1
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Now suppose there exists h E Aut(C/W U C(w)) with hIC(w') 1. By the above,
there exists h' E Aut(C/W U C(w')) with the same restriction to U,7=1 C(wi) as h.
Then h'h-1 is trivial on W UU 1 C(wi) and non-trivial on C(w'). This contradicts
dependence of w' on w1i ..., wn.

(iv) See ([27], Lemma 5.7(ii)).

Corollary 3.2.4 Suppose W is a primitive permutation structure with trivial al-
gebraic closure and 1r : C -+ W is a simple finite cover. Then either the kernel of
7r is finite, or 7r is free.

Proof. First note that either the binding groups are trivial (in which case a is
a trivial cover), or they are equal to the fibre groups and hence simple. Primitivity
implies that the equivalence relation EC is the universal relation, or equality. In
the former case, Aut(C/W U C(w)) is trivial for all w E W. In particular, the
kernel of it is finite. So suppose we are in the latter case. If the binding groups are
non-abelian then Theorem 3.2.3(iv) shows that 7r is free. If the binding groups are
abelian then triviality of algebraic closure combined with Theorem 3.2.3(iii) again
shows that ir is free.

3.3 Minimal covers

3.3.1 Existence of minimal covers

Suppose that 7r : C -> W is a finite cover. Then we say that Tr is minimal if any
proper expansion of C induces new structure on W (this is elsewhere referred to
as a maximal cover: [35], for example). Equivalently, if p : Aut(C) --> Aut(W)
is the restriction map, it is minimal if, for every proper closed subgroup G1 of
Aut(C), µ(G1) 54 Aut(W). Clearly, if the collection of proper subcovers (that
is, proper expansions of C inducing no new structure on W) has the descending
chain condition, then there is a minimal cover. In Theorem 5.4 of [27], it is shown
that if W is countable, l o-categorical and has a `nice enumeration' (a technical
combinatorial condition due to Ahlbrandt and Ziegler [2]) then any finite cover of
W does indeed have the descending chain condition on subcovers (see Section 7.2.2
for more on this). If we are just interested in minimal covers, however, then the
following group-theoretic result of Cossey, Kegel and Kovics [17] gives something
stronger.

Proposition 3.3.1 Let I and E be Hausdorff topological groups, and let i : I' -
E be a continuous epimorphism with compact kernel K. Then there is a closed
subgroup G < F such that p(G) = E, and for every proper closed subgroup H of G
we have µ(H) < E.

Proof. Let .P be the set of closed subgroups H of 1' such that µ(H) = E. By
Zorn's Lemma, it suffices to show that if (Hi : i E I) is a chain (under inclusion)
of members of F then H := f(Hi : i E I) is in Y. Clearly H is closed. Let g E E.
Then there is ho E r such that u(ho) = g. Now {h E r : µ(h) = g} is just the
compact set h0 . Each set Hi n h0K is non-empty, so by compactness H n h0K is
non-empty, and it follows that H E Y.
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Corollary 3.3.2 Let W be a permutation structure.

(a) Let C be a symmetric algebraic extension of W. Then C has a maximal
expansion which is a symmetric extension of W.

(b) Let zr : C -> W be a finite cover. Then there is an expansion of C which
is a minimal cover of W.

Proof. (a) Apply Lemma 1.5.1(b) and the above Propsition.
(b) This follows from (a), since a finite cover is a special case of a symmetric

algebraic extension.

Corollary 3.3.3 Let W be a permutation structure. Then the following are equiv-
alent:

(a) every finite cover of W splits;
(b) every minimal finite cover of W is trivial.

Proof. Suppose that (a) holds, and let it : C --> W be a minimal finite cover
with restriction map a. By (a), its kernel K has a closed complement G. By
minimality, G = Aut(C), so K = 1.

Conversely, assume (b), and let a : C - W be a finite cover. Then by Corol-
lary 3.3.2 and (b), there is a minimal cover expanding C with automorphism group
G and trivial kernel. Then G is a closed complement to the kernel of it.

Remark. Corollary 3.3.2 tells us more than just Corollary 3.3.3. It says that
once we know the minimal covers of W and the possible kernels, we know all the
finite covers of W. For if it : C -> W is a finite cover, then Aut(C) = K. Aut(M),
where M is a minimal cover of W which is an expansion of C, and K is the kernel
of a.

3.3.2 Frattini covers

We shall state our next result in the broader language of topological groups. So we
shall say that a continuous epimorphism of Hausdorff topological groups 0 : G -> H
is a Frattini cover if for every proper closed subgroup Gi of G we have O(G1) # H.
(The reason for the terminology is that if G and H are profinite then 0 is Frattini if
and only if ker(O) is contained in the Frattini subgroup of G, that is, the intersection
of the maximal open subgroups of G - see Section 20.6 of [28]). A version of the
`Frattini argument' for finite groups yields the following. It uses results from Section
20.10 of [28], where the Sylow theory for profinite groups is presented. (If p is a
prime, a closed subgroup of a profinite group is a Sylow p-subgroup if the index of
every open subgroup containing it is coprime to p, and no closed subgroup properly
contained in it has this property.)

Lemma 3.3.4 ([25]) (a) Suppose that 0: G -> H is a Frattini cover of Hausdorff
topological groups such that K := ker o is profinite. Then K is pronilpotent (that
is, an inverse limit of nilpotent groups).
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(b) If 7r : C - W is a minimal finite cover and the fibres of ir are of bounded
size, then the kernel of 7r is nilpotent.

(c) Suppose W is a permutation structure such that Aut(W) has finitely many
orbits on W. Let 7r : C , W be a finite cover of W. Then there is a covering
expansion of zr with nilpotent kernel.

Proof. (a) It suffices to show that for each prime p the group K has a unique
Sylow p-subgroup, for then each Sylow subgroup is normal in K, so the Sylow
subgroups commute. Let P be a Sylow p-subgroup of K. Then, as P is closed,
so is NG(P). Let g c G. Then P9 is a Sylow p-subgroup of K, so by Proposition
20.43 of [28] there is k E K such that P9 = Pk. Hence gk-l E NG(P), so we
obtain G = KNG(P). As 0 is a Frattini cover and NG(P) is closed, it follows that
NG(P) = G, that is, P is normal in G. Now K is topologically generated by its
Sylow subgroups (by 20.43(d) of [28]) and is a commuting product of them, and as
each of the Sylow subgroups is pronilpotent, so is K.

(b) From (a) and Lemma 1.5.1 we get that the kernel K of 7r is pronilpotent. But
K is a subdirect product of finite groups of bounded size, so is therefore nilpotent.

(c) follows from Corollary 3.3.2 and (b).

We omit the proof of the following (it makes use of 3.3.4). It enables us for
some purposes just to work with covers with abelian kernel, where the machinery
of Section 6 can be used.

Corollary 3.3.5 ([25]) Let W be a permutation structure. Then the following are
equivalent:

(a) every finite cover of W splits;

(b) every finite cover of W with elementary abelian kernel splits.

3.3.3 Amalgamation

The following lemma shows how minimal finite covers can be amalgamated. It is
really nothing more than the fibre-product construction and Lemma 20.30 of [28],
adapted to our purposes.

Lemma 3.3.6 Suppose irl : Cl -+ W and 72 : C2 --> W are minimal finite covers
of permutation structures. Then there is a minimal finite cover r : M - W which
factors through both irl and 1r2. If Cl and C2 are transitive, then M can be taken
to be transitive. If irl and 1r2 have finite kernel, then a can be taken to have finite
kernel.

Proof. Let

Then

MO = {(el,e2) E C1 X C2 : Trl(el) _ ir2(C2)}.

ro = {(91, 92) : 9% E Aut(C1), 91I W = 921W}



32 D. Evans, D. Macpherson, A. Ivanov

is a closed subgroup of Sym(Mo). There is a natural continuous epimorphism
po : Fo -+ Aut(W) and this has compact kernel. So by 3.3.1 there is a closed
subgroup r of Fo such that the restriction of po to F is a Frattini cover of Aut(W).
Let M be the permutation structure with domain Mo and automorphism group F.
If a : M --+ W is the map a(ci,c2) = ir1(cl) = ir2(c2), then a is a minimal finite
cover. Clearly a factors through irl and 7r2. The fact that any automorphism of
Ci or C2 lifts to an element of Aut M follows from minimality of 7rl and 7r2. For a
transitive cover we can use 3.2.1. If 7rl and a2 have finite kernels, then it is clear
that the kernel of a is also finite.

3.4 Irreducibility conditions

We say that the automorphism group of a permutation structure M (or the struc-
ture itself) is irreducible if Aut(M) has no proper closed subgroups of finite index.
Equivalently, for countable Ro-categorical M, if acleq(0) = dcleq(0). Most of the
general results on describing the finite covers of a permutation structure W will
assume some sort of irreducibility conditions: usually on W itself, but also some-
times on various point stabilisers. This may seem unduly restrictive, so some
further comments on these hypotheses are in order.

Firstly, many of the familiar no-categorical structures (such as all the primitive
homogeneous graphs and digraphs) have the property that Aut(W/X) is irreducible
for all finite algebraically closed X (see Lemma 3.3 and Theorem 4.1(a) of [23] for
some examples of how to verify this). Even if W is not irreducible then it is often
possible to consider an expansion of W which is, and use knowledge of the finite
covers of this to determine information about the finite covers of W. An example
of this is the treatment of the highly homogeneous betweenness and separation
relations in [39].

A second reason for the irreducibility conditions is that without them it is easy
to construct slightly exotic finite covers. For example, results in Section 2.1 show
how to construct non-split free covers when point stabilisers are not irreducible.
The following simple lemma shows that if W itself is not irreducible then construct-
ing non-split covers is even easier.

Lemma 3.4.1 Let W be a permutation structure which is not irreducible. Suppose
Aut(W) has a smallest closed subgroup of finite index. Then there exists a non-split
finite cover of W with finite kernel.

Proof. Let 0 : Aut(W) -+ F be a continuous group epimorphism with F finite
and as large as possible. Let

1,A-4G- F-41
be a non-split finite extension of F (see Remark 2.1.6). Consider G acting faithfully
on some finite set X. Let C = W x X and consider this as the domain of a
permutation structure with automorphism group

F = {(y,g) E Aut(W) x G : 0(y) = P(g)}.
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Projection to the first coordinate gives a finite cover it : C - W, which is easily
seen to be non-split. Indeed, the kernel of the cover is K = {(1, a) : a E ker 0},
which is obviously isomorphic to A. Suppose for a contradiction that r = KH,
where the restriction map is an isomorphism between H and Aut(W). Applying
7r2i projection to the second co-ordinate, gives that r2(H) is a supplement to ker'O
in G. But the maximum size for a continuous finite homomorphic image of H is
IFl. So r2 (H) is a complement to ker0 in G, a contradiction.

In Section 7 of the notes, we indicate how results which are qualitative rather
than quantitative can be obtained if we weaken the irreducibility conditions to G-
finiteness: a notion due to Lascar ([46]), and which in many ways seems to be the
most attractive level of generality one could aim for.

Definition 3.4.2 We say that a permutation structure W (or its automorphism
group Aut(W)) is G-finite if for all finite X C_ W there is a smallest closed subgroup
of finite index in Aut(W/X).

3.5 Superlinked covers

The cover Tr : C -> W is said to be superlinked if it has finite kernel. This termi-
nology was introduced in [27].

Recall that a permutation structure W is said to have trivial algebraic closure
if the pointwise stabiliser in Aut(W) of any finite A C W has no finite orbits
on W \ A. Many homogeneous relational structures have this property, but non-
trivial Grassmannians do not. For structures W with trivial algebraic closure, the
following theorem gives good reasons for restricting to superlinked covers. The key
point is the description of the kernels of simple finite covers of such structures given
in Corollary 3.2.4.

Theorem 3.5.1 ([23], Lemma 2.5) Suppose that W is a primitive permutation
structure with trivial algebraic closure, and that each point stabiliser Aut(W/w) is
irreducible. If every superlinked finite cover of W with simple fibre groups splits,
then every finite cover of W splits.

Proof. By Corollary 3.3.2, it suffices to show that if a : C - W is a minimal
finite cover then it is trivial, so suppose for a contradiction that it is non-trivial.
By Lemma 3.2.1(a) we may suppose that it is regular, and by Lemma 3.2.1(b) 7r
can be factored as 7r27r1, where 71 : C - C1 and 72 : C1 --> W and the latter has
(non-trivial) simple fibre groups. As Aut(W/w) is irreducible, Aut(Cl(w)/w) _
Aut(Cl(w)/W) (by Lemma 2.1.1), so these groups are non-trivial and 7r2 is non-
trivial. It follows from Corollary 3.2.4 that ire is free or superlinked. So in either
case, ire splits (by Lemma 2.1.4 in the fomer case, and by hypothesis in the latter).
Thus there is a closed subgroup H of Aut(C) with H fl Aut(C/W) = Aut(C/Cl)
and the image of H under the restriction map to W being Aut(W). As ire is
non-trivial, this contradicts minimality of a.
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4 Finite covers with finite kernels

At the end of the previous section we showed how the splitting question for the finite
covers of certain permutation structures reduced to the special case of superlinked
covers, where the kernel is finite. In this section, which is mainly a commentary
on [24], we analyse these types of covers in detail. Initial reductions show that we
should consider two sorts of superlinked covers: locally trivial and locally transitive
ones. In the nice cases, the first sort can be described in terms of digraph coverings,
and the second type can be thought of as being like a vector space covering its
projective space.

4.1 Elementary reductions

We consider a finite cover 7r : C -+ W of permutation structures. Since any
l o-categorical structure is biinterpretable with a transitive one (Lemma 1.1.1) we
usually assume that W is transitive. Moreover since in this case we can replace a
by a regular finite cover (Lemma 3.2.1) we also often assume that C is transitive
(and say that 7r is a transitive finite cover).

As explained in Section 3.4, irreducibility is a useful assumption on C, and we
shall work mostly with irreducible C and W. In fact, sometimes irreducibility of
Aut(C) follows from that of Aut(W).

Lemma 4.1.1 Let W be irreducible, and let it : C -> W be a minimal cover. Then
C is irreducible.

Proof. Let H be a closed subgroup of Aut(C) of finite index, and let p(H) be
its image in Aut(W) under restriction. By Lemma 1.4.2, this is a closed subgroup
of Aut(W) of finite index, so equals Aut(W). Hence by minimality of 7r, we have
H = Aut(C).

A non-trivial bonus from our irreducibility assumption is the following. The
example to keep in mind is Example 3 of 1.2 (a vector space over a finite field
covering a projective space).

Lemma 4.1.2 Suppose that it : C - W is an irreducible, superlinked finite cover.
Then

(a) Aut(C/W) is central in Aut(C);

(b) the cover is split if and only if it is trivial.

Proof. (a) As Aut(C/W) is a finite normal subgroup of Aut(C) its centraliser
in Aut(C) is a closed subgroup of finite index in Aut(C), so, by irreducibility, equal
to Aut(C).

(b) Since the kernel is finite, any complement is a closed subgroup of finite index
in Aut(C).
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In Section 2.2, we showed how quotients of the universal covering of a digraph
could give examples of minimal superlinked finite covers. These covers r : C -; W
satisfy the first two of the following conditions:

Definition 4.1.3 Suppose r : C --> W is a (transitive) finite cover. Then:

r is untwisted if the fibre groups and binding groups are equal;

r is locally trivial with respect to a certain Aut(W)-orbit R on W2 if whenever
(x, w) E R, then Aut(C(x)/C(w)) = 1;

r is locally transitive with respect to a certain Aut(W)-orbit R on W2 if
whenever (x, w) E R, then Aut(C/C(w)) is transitive on C(x).

The example to bear in mind for a locally transitive finite cover is that of a vector
space covering its projective space. See Example 2 of Section 1.2 for a twisted
(trivial) cover. These examples are in some sense typical, as we shall see.

There is a lemma (Lemma 1.6 of [24] - omitted here) which enables us under
standard hypotheses (transitive, irreducible, superlinked) to factor a cover as an
trivial cover followed by an untwisted cover. The conditions above are on particular
covers, not on W alone, but by the following lemma, irreducibility assumptions on
one and two point stabilisers in Aut(W) often ensure that the first two conditions
in the above hold. Example 4 of 1.2, and Lemma 2.1.5, indicate how reducibility
of the point stabiliser can give twisted non-split finite covers of W in a canonical
way. The following are taken from [24].

Lemma 4.1.4 Let r : C -* W be a transitive finite cover whose kernel is central
in Aut(W). Then

(a) for any c E C, Aut(C/c, W) = 1,
(b) if Aut(W/w) is irreducible, then the cover is untwisted, and
(c) if x, w E W and Aut(W/x, w) is irreducible, then

Aut(C(x)/C(w)) = 1.

Proof. (a) Straightforward, and omitted (see ([24], Lemma 1.3)).
(b) This follows from Lemma 2.1.1.
(c) Let µ : Aut(C) - Aut(W) be restriction. By Lemma 1.4.2 and our irre-

ducibility assumption,

µ(Aut(C/C(x),C(w))) = Aut(W/x, w).

Let g E Aut(C/x,C(w)). There is g' E Aut(C/C(x),C(w)) such that µ(g) = µ(g').
It follows by (a) that g'-lg = 1, so g I C(x) = 1, as required.

Of course, this result is applicable to irreducible superlinked finite covers, be-
cause of Lemma 4.1.2.

We now record a factorisation lemma, which enables us to separate out the
locally trivial part of a cover (to which we can apply Theorem 4.2.2) and (when
the locally trivial part is trivial) obtain a locally transitive cover.
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Lemma 4.1.5 ([24], Lemma 3.1) Let W be a transitive irreducible permutation
structure. Let it : C -> W be an untwisted, transitive, irreducible, superlinked finite
cover and x, w E W be distinct. Then there are finite covers ir1 : C -> C' and
72 : C' -> W such that the following hold.

(a) 7 = 72ir1
(b) Aut(C'(x)/C'(w)) = 1.
(c) ifs E C'(x) and t E C'(w) then Aut(C/C(t), s) is transitive on C(s).

Sketch Proof. We just give the construction of ir1 and 9r2. Let K := Aut(C/W).
As a is untwisted, the natural map j : K Aut(C(x)) is an isomorphism. Put
K, := j-1(Aut(C(x)/C(w))). Let C' be the set of Iil-orbits on C, and define 7rl,
x2 by

a1(c) = Klc and ir2(Klc) = a(c).

Also let Aut(C') be the group of permutations of C' induced by Aut(C). It is easy
to check that these covers satisfy our conditions. 0

4.2 Graphic triples and digraphs
We give a combinatorial condition which holds of many homogeneous structures
and enables us to control the superlinked finite covers via digraph coverings.

If W is a permutation structure, A a finite subset of W, and n E N, then by an
n-type of W over A we mean an Aut(W/A)-orbit P on Wn (and if A = 0 we refer
to this simply as an n-type). For x E Wn we write P(x) to indicate that x E P.

Definition 4.2.1 Suppose that L is an irreducible transitive permutation struc-
ture with a 3-type P and 2-types Q, R. We say that (P, Q, R) is a graphic triple of
types if the following hold.

1. P(w, x, y) implies w, x, y are distinct and Q(w, x), Q(w, y), R(x, y);

2. R (as a digraph relation) is connected;

3. if (w, x, y), (w', x, y) E P and H is a closed subgroup of Aut(L/x, y) of finite
index then w, w' lie in the same H-orbit;

4. either of the following holds:

(a) if R(x, y), R(x, z), R(y, z) then there is w E L such that P(w, x, y),
P(w,y,z)and P(w,x,z);

(b) P := {(w, x, y) E L3 : R(w, x), R(w, y), R(x, y)}.

Usually we construct graphic triples via strong types (see Definition 4.3.1 below),
and then we have Q = R.

The main theorem on graphic triples is the following. It describes the Q-locally
trivial finite covers of a structure L with a graphic triple (P, Q, R) in terms of
digraph coverings of (L; R). Note that connectedness of R implies connectedness
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of the relation Q, so such a finite cover is necessarily superlinked. The `untwisted'
assumption seems unavoidable, in view of constructions like Example 4 of Section
1.2.

Theorem 4.2.2 ([24], Theorem 1.13) Let L be a transitive, irreducible permu-
tation structure with a graphic triple of types (P, Q, R). Suppose that r : C -+ L is
an untwisted, transitive, irreducible finite cover such that whenever x, w E L with
Q(w,x) then Aut(C(x)/C(w)) = 1 . Then there is an Aut (C) -invariant digraph
relation R' on C such that r : (C, R') -+ (L, R) is a covering of digraphs, and an
automorphism g of the pure digraph (C, R') is an automorphism of C if and only
if g maps r-fibres to r-fibres and induces an automorphism of L.

We omit the proof here, but observe that R' is defined as follows:

For a, b E C, we have R'(a, b) if and only if there is w E L such that
P(w, r(a), r(b)) and a, b lie in the same Aut(C/C(w))-orbit.

(Hypothesis 3 in the above definition ensures that this is independent of choice of
w.)

The theorem has the following corollary.

Corollary 4.2.3 ([24], Corollary 1.14) Let L be an irreducible transitive per-
mutation structure with a graphic triple (P, Q, R). Let a : (U, R") (L, R) be the
universal covering of digraphs, let A be the group of deck transformations, nor-
mal in the subgroup r of all elements of Aut(U, R") which map fibres to fibres and
induce automorphisms of L.

(a) Let r : C - L be an untwisted, irreducible transitive finite cover such
that whenever Q(w,x) holds in L we have Aut(C(x)/C(w)) = 1. Then
there is a surjective group homomorphism r -> Aut(C) whose kernel H
is contained in A, such that 0/H = Aut(C/L).

(b) Conversely, if H is a closed normal subgroup of r of finite index in A
such that F/H is irreducible, then 0/H is isomorphic to the kernel of
an irreducible finite cover rH : CH -4 L.

Again, we omit the proof. In (b), the set CH is just the set of H-orbits on U.
There is a digraph relation R' on CH, with R'(a, b) holding if and only if there are
u E a and v E b such that R"(u, v). The structure on CH is that preserved by those
permutations of CH which preserve R', induce automorphisms of L, and preserve
the set of fibres of the natural map to L.

Example. Recall Example 2.2.2. There, for each n > 1 a construction was given
of a non-split finite cover V,, of the countable homogeneous local order D. It follows
from Theorem 4.2.2 and Lemma 4.1.4 that the finite covers V,, described there are
the only transitive irreducible superlinked finite covers of D.

The irreducible superlinked covers of the countable homogeneous circular order
can be described similarly ([24], Example 2.9). A different approach, due to Ivanov,
can be found in [39].
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4.3 Strong types

We introduce a very weak (and in general non-symmetric) notion of independence,
which is convenient for handling covers. From it we can construct graphic triples,
but (Theorem 4.3.3) the digraph coverings which arise are all trivial.

Definition 4.3.1 Suppose that W is a permutation structure. A strong type over
W is a function p which assigns to each finite A C W a 1-type over A, denoted by
p ( A, subject to the following coherence conditions.

(i)forallACW,Af(pIA)=0;
(ii) if A C A'then p I
(iii) if g E Aut(W) then g(p A) = p I gA.

Model-theoretically, a strong type over W may be regarded as a non-algebraic
complete 1-type q with W as a set of parameters, such that for any a realising q (in
an elementary extension of W), g E Aut(W) and b E W we have tp(a, b) = tp(a, gb).
We give some examples.

(a) If W is the random graph, then there are two strong types, corresponding
to adjacency to everything in A, or to non-adjacency. Similarly, if W =
(Q, <), then there are two strong types, corresponding to being greater
than everything in A, or to being less than everything in A.

(b) If W is a vector space (or its projective space) then we have a strong type
by taking as p I A the vectors (respectively, points) linearly independent
from A.

(c) More generally, if W is stable, saturated and irreducible, then any ele-
ment independent from W (over 0) realises a strong type over W.

(d) If (Q, T) is the countable dense linear betweenness relation without end-
points (on the rationals), then there is no strong type over W. Suppose
p were such a thing, and let a, b E Q. Then (without loss of generality)
pl{a,b} consists of all x E Q greater than a and b. Let g be an auto-
morphism interchanging a and b. Applying this gives a contradiction to
(iii). A similar argument shows that the countable dense circular order
has no strong type (for once any parameter is named, all pairs acquire
an orientation, so again (iii) is violated).

(e) The countable, universal, homogeneous local order D has no strong type.
For any x E L the only posssibility for pI{x} would be the in-vertices,
or the out-vertices of x (by homogeneity). But no point dominates, or
is dominated by a cycle, and so (ii) is impossible to satisfy with either
of these.

Remark. There is a related notion due to Ivanov. A structure W is said to
have orthogonal copies if the conditions of Definition 4.3.1 hold with respect to all
types, not just 1-types. Theorem 4.3.5 below can also be deduced from Ivanov's
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results on structures having orthogonal copies: see [39] for more details, as well as
Theorem 5.1.4 here.

The following lemma (whose proof we omit) enables us to construct graphic
triples from strong types.

Lemma 4.3.2 ([24], Lemma 2.2) Let p be a strong type over W, let A be a finite
subset of W, and H be a closed normal subgroup of finite index in Aut(W/A). Then
H is transitive on p I A.

Theorem 4.3.3 ([24]) Let W be a transitive irreducible permutation structure,
and p be a strong type over W. Define

R={(x,y)EW2:xEpl {y}},

P = {(w, x, y) E W3 : R(x, y) and w E p I {x, y}}.

Then

(a) (P, R, R) is a graphic triple of types for W;

(b) any two paths in (W, R) with the same endpoints are homotopic.

Proof. (a) Since W is transitive, P and R are types. Conditions (1) and (4)(a)
of the definition of graphic triple are immediate, as is (2) (the digraph has diameter
two). For (3), suppose that H is a closed subgroup of Aut(W) of finite index in
Aut(W/x,y). Then by the last lemma, {w : P(w, x, y)} is an H-orbit.

(b) Let xo ... xk be a path in (W, R). Pick w E P I {xo, ... , xk}. In particular,
R(w, xi) for i = 0, ... , k. It suffices to show that xo ... xk is homotopic to xowxk.
This reduces inductively to showing that xoxl is homotopic to xowxl. If R(xo, xl)
we have elementary homotopies

xoxl .v xOwxOxl - xowxl,

and if R(xl, xo) we have

xOxl - xOxlwxl - xpwxl.

From this and Theorem 4.2.2, we obtain

Corollary 4.3.4 ([24], Corollary 2.4) Let W be a transitive irreducible permu-
tation structure with a strong type p and corresponding graphic triple (P, R, R).
Let r : C -> W be an untwisted irreducible finite cover such that whenever R(x, y)
holds in W, we have Aut(C(x)/C(y)) = 1. Then x is trivial.

We give an application of Corollary 4.3.4 to finite covers of some familiar ho-
mogeneous structures. There is a slightly more general statement (phrased more
group-theoretically) in Theorem 2.7 of [24]. Parts (i)-(iv) are also proved (in a
different way) in ([23], Theorem 4.1).
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Theorem 4.3.5 Suppose that W is one of the following countable No-categorical
structures.

i, a pure set;
ii. (Q, <);

iii. any homogeneous graph with primitive automorphism group;
iv. a Henson digraph (that is, a homogeneous digraph whose set of finite

substructures is the collection of all finite digraphs which do not
embed any of a given set of finite tournaments);

v. a vector space over a finite field.

Then any superlinked finite cover of W splits.

In cases (i)-(iv) Theorem 4.3.5 combined with Lemma 3.5.1 shows that any
finite cover splits. This generalises earlier results of Ziegler [49], and Ivanov ([38]
and [39]) on finite covers of a pure set and some other structures. Results of Ivanov
in Section 5 also provide a self-contained proof of 4.3.5.

4.4 A vector space covering its projective space

The most obvious algebraic example of a finite cover is Example 3 from Section 1.2:
the map it : V\ {0} - PG(V) given by v H (v), where V is a countable-dimensional
vector space over a finite field. This example is not covered by the above theory,
since it is not locally trivial. In fact, it is locally transitive, that is, the pointwise
stabiliser of any one fibre is transitive on any other fibre. We now describe some
of the results of Section 3 of [24], which subsume this example. The key feature of
the projective space which gives rise to the non-split superlinked covering (namely
the vector space) is that the stabiliser of two points has the multiplicative group of
the field as a continuous homomorphic image (the stabiliser acts regularly on the
remaining points of the line through the two points).

In the rest of this section we assume W to be an irreducible, countable, transi-
tive, l o-categorical structure, whose 1-point stabilisers are irreducible, and we also
suppose that W has a strong type p and a corresponding graphic triple (P, R, R).
We shall sketch a classification of all the transitive irreducible superlinked finite
covers of W. By Lemma 2.1.1, all such covers are untwisted.

Fix x, w E W such that R(w, x). First, let it : M - W be a transitive, irre-
ducible superlinked finite cover. Let it = ir2ir1 be the factorisation in Lemma 4.1.5,
relative to the pair (x, w). Then by Corollary 4.3.4, 7r2 is trivial, so 7r = 7rl. In
particular, Aut(M/M(w)) is transitive on M(x). Let K := Aut(M/W). As 7r is
untwisted, it follows by Lemma 4.1.4(a) that K is isomorphic to Aut M(x) and acts
regularly on M(x). From this and the last paragraph, it follows that by comparing
actions on M(x) we get a surjective homomorphism from Aut(M/M(w), x) to K.
It is easy to check that restriction to W gives an isomorphism Aut(M/M(w), X) -
Aut(W/w, x). By composing these maps we get an epimorphism

0w,x : Aut(W/w, x) , K.
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If g E Aut(W) and h E Aut(W/w,x), then

09w,9x(yhg-1) = Ow,x(h) (1)

Lemma 4.4.1 (Lemma 3.3 of (241) In the above situation, the following hold.

(a) Suppose that R(w, x), R(w, y), and R(x, y) hold. Then for any element
g of Aut(W/w, x, y) we have

Ow,Y(g) = 0w,x(g)Ox,Y(g)-

(b) If R is symmetric, then for (w, x) E R we have x = q5;w.

Definition 4.4.2 Let W be as above, and K a finite abelian group. Then a family
(¢w,x : (w, x) E R) of continuous epimorphisms lpw,x : Aut(W/w, x) -+ K is called
a conjugate system of homomorphisms for (W, R, K) if conditions (1) and condition
(a) of Lemma 4.4.1 hold. If the family arises from a cover ir as above, it is said to
be associated with (ir, R).

The following theorem is an amalgam of Theorems 3.5, 3.7 and 3.8 of [24]
(where it is not assumed that one-point stabilisers in Aut(W) are irreducible). In
the proof, the above observations are reversed, and a finite cover is constructed
from a conjugate system of homomorphisms.

Theorem 4.4.3 Suppose that W is a countable, transitive l o-categorical structure
with a strong type p and an associated graphic triple (P, R, R), and let K be a finite
abelian group. There is a one-to-one correspondence between conjugate systems of
homomorphisms for (W, R, K), and untwisted, transitive, irreducible, locally tran-
sitive, superlinked finite covers it : M -+ W with kernel isomorphic to K.

There are generalisations of this result due to Jeffrey Koshan ([44], [45]) not
assuming that W has a strong type. These are complicated to state in full gener-
ality, but one result assumes only that for all x, y, z E W there exists w E W such
that x, y, z he in the same Aut(W/w)-orbit. Given this, and irreducibility of W
and point stabilisers in W, Koshan describes explicitly all irreducible superlinked
finite covers of W.

5 The cover problem and independence
5.1 Strongly determined types
The techniques and notions in the previous section parallel very clearly some ideas
from stability theory (strong types, stationarity, and distinguished extensions of
types). Indeed, the stabili ty- theoretic notions motivated many of the definitions
there, although to avoid presuming specialist knowledge, we did not present them
in this way. In this section we amplify further on this, and consider the results of
Section 4 from this viewpoint. We use standard model-theoretic terminology and
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results throughout. The following theorem serves as the source of many of the ideas
presented in this section, and shows that assuming stability simplifies considerably
the problems considered in the previous section.

Theorem 5.1.1 ([24], Lemma 2.5) Let M, W be transitive, irreducible, stable sat-
urated structures. If r : M - W is an irreducible transitive finite cover with local
triviality for independent pairs, then it is one-to-one.

Proof. Let x, w E W be independent (over 0) and a, b E M(x). By transitivity
of M, tp(a/0) = tp(b/0). Since M(w) C acl(w), both a and b are independent
from M(w). If a and b are distinct then saturation and local triviality of M
imply that they have distinct types over M(w). Thus there are two distinct non-
forking extensions of tp(a/0) over M(w). But then the Finite Equivalence Relation
Theorem implies that M must be reducible, a contradiction.

The main point of the above proof is the existence of some independent w. Also,
we needed the Finite Equivalence Relation Theorem, because we considered a finite
cover. So finite equivalence relations are unavoidable in considerations of this kind.
To some extent, the irreducibility assumptions of the previous section finesse this:
irreducibility of W means precisely that there are no non-trivial invariant finite
equivalence relations on any Aut(W)-orbit of W" for all finite n.

One can ask whether it is possible to generalise this argument introducing
weaker variants of independence. The notion of a strong type in the previous
section is one way of doing this. We now give a more refined version of this, not
assuming irreducibility of W. First, we introduce some notation and terminol-
ogy. Denote by Aut°(W) the intersection of all closed subgroups of finite index
in Aut(W) and refer to the elements of this as strong maps. In the countable,
No-categorical case, this is precisely the group of automorphisms preserving all 0-
definable finite equivalence relations (on W", for all n). From now on we assume
that W is countable and No-categorical (but we should mention here that the ma-
terial of this section largely extends to the general case [401). The following is a
generalisation of the notion of strong type introduced earlier (4.3.1).

Definition 5.1.2 Suppose that W is a permutation structure. A strongly deter-
mined n-type over W is a function p which assigns to each finite A C W a complete
n-type over A (whose set of realisations is denoted by p I A) subject to the following
coherence conditions.

(i) for all A C W, An n (p I A) = 0;
(ii) if A' C A then p I ACpIA';
(iii) if g E Aut°(W) then g(p I A) = p I gA.
A strongly determined n-type is a strong n-type if the condition (iii) of the

definition holds for all automorphisms of W.

Here we view p I A as a set of elements independent from A. A strongly
determined n-type over W may be regarded as a non-algebraic complete n-type q
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with W as a set of parameters, such that for any a realising q, any tuple b from W,
and any strong map g E Aut°(W) , the tuples ab and ag(b) meet the same classes
of 0-definable finite equivalence relations and realise the same type over 0. We get
this type over W (denoted by p I W) by compactness. It is worth noting here that
p I W is a type definable almost over 0 ([40]). Also, any type over W definable
almost over 0 induces a strongly determined type.

Examples of strong 1-types were given in Section 4.3. Recall that if W is the
countable linear dense betweenness relation without endpoints, then there is no
strong 1-type over W, since any element reversing the order will violate condition
(iii). Similarly, if W is the countable dense circular order, there is no strong 1-
type, for once any parameter is named, all pairs acquire an orientation, so again
(iii) is violated. There is no strongly determined 1-type for the circular order,
but there are (exactly two) strongly determined 1-types for the dense betweenness
relation. In the latter case one can say that we have a strongly determined type
of multiplicity 2. More generally, define the multiplicity of a strongly determined
type p as the number of all conjugates of p I W under Aut(W) (the conjugate of
p by g E Aut(W) is defined as 9p I A = g(p I g-'A)). A strong type is exactly a
strongly determined type of multiplicity 1.

Theorem 5.1.3 ([40]) Let W be an No-categorical transitive structure such that
Aut°(W) is of finite index in Aut(W). Let p be a strongly determined n-type over
W and 7r : C --+ W be a finite cover of W. For a E p 10 let 6 be an enumeration
of C(at). Then tp(b/0) extends to a strongly determined type over C.

Proof. We work in an w1-saturated elementary extension of C. Choose b' of
the type of 6 such that 7r(b') E p I W. Let a' = ir(b') and -G be the group of
automorphisms of C which extend to elementary maps fixing V. Note that this is
a closed subgroup of Aut(C) as elementary maps are finitely-determined.

By definition of p, any element of Aut°(W) extends to an elementary map
W U a' , W U a'. Moreover we claim that any automorphism in the kernel of a
extends to an elementary map C U a' -> C U a'. To see this it suffices to show
that for any finite tuple w in W there exists a tuple a1 of elements of W with
tp(a'/C(w)) = tp(a1/C(w)). But tp(a'/C(w)) is determined by tp(a'/w') for some
finite tuple w' (by openness of the restriction mapping), so taking a1 E P I w'
works.

A similar argument and Konig's lemma shows that any elementary map W U
a' -> W U a' which induces an element of Aut°(W) on W extends to an elementary
map C U a' -+ C U a'. It follows that the group H of automorphisms of C extending
to elementary maps fixing a' contains all those inducing strong maps of W (so is
of finite index in Aut(C)). Clearly G is of finite index in H, and so in particular
contains all strong maps of C. It is now easy to deduce that tp(b'/C) is a strongly
determined type over C. 0

The next result is similar to Theorem 5.1.1. To eliminate local transitivity
(cf. part (c) of 4.1.4) we assume here that acl = dcl and W has weak elimination
of imaginaries: for every c E Weq there is a finite A C W n acle9(c) such that
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c E dcle9(A). Note that these imply that Aut(W/X) does not have proper closed
subgroups of finite index, for all finite X C W. Thus any strongly determined type
is a strong type.

Theorem 5.1.4 ([40]) Assume that W is a countable, transitive loo-categorical
structure satisfying the above assumptions and any type over 0 extends to a strongly
determined type over W. Let it : C - W be a superlinked finite cover of W and E
be the finest 0-definable finite equivalence relation on C. Then each E-class has a
single intersection with any fibre of it. In particular, it is untwisted and split.

Proof. Let a be a tuple from W such that every a E Aut(C/W) fixing b = C(a)
pointwise is trivial. One can check that weak elimination of imaginaries guarantees
that for any c E C the type of (c, b) over acl(c, b) fl W implies tp(cb/W ). Since the
latter has a unique realisation extending b, we get that c E dcl(b U (acl(c, b) fl W)).
Since dcl = acl in W, c E dcl(b U {ir(c)}).

By Theorem 5.1.3 there exists a strongly determined type p extending tp(b/0).
For distinct c and c' satisfying 7r(c) = ir(c') consider the types p I {c} and p I {c'}.
We may assume that b E p I {c, c'}. Since c, c' E dcl(bU {7r(c)}), the types of cb and
c'b are different. Thus if a E Aut(C) sends c to c', then a(p I {c}) # p I {a(c)}.
Hence a ¢ Aut°(C) and the elements c and c' meet distinct E-classes.

On the other hand, as W is irreducible, each E-class meets each fibre. Now it
is easy to see that adding unary predicates for the E-classes we get a cover of W
whose fibre group is trivial. 0

Remark 5.1.5 It follows from Lemma 3.1.2 that the cover it in the above is ac-
tually strongly split.

5.2 Universal covers

We now return to digraph coverings. As we noted in Section 2.2.1, if W is a
connected digraph then one can define the (topological) universal digraph covering
U -* W and the corresponding group of deck transformations A such that the
kernels of natural superlinked finite covers of W can be realised as homomorphic
images of A.

This inspires the following definition. A map U -> W inducing a symmetric
extension of W is a universal covering for a class Sl of finite covers of W if for
every M - W from St there exists a finite cover N of U with trivial kernel which
also covers M and the corresponding diagram for N, M, U, W is commutative. In
this definition the natural isomorphism Aut(U) -> Aut(N) induces a surjective
homomorphism v : Aut(U) -> Aut(M). Moreover, if for some a E Aut(U) we have
v(a) E Aut(M/W) then a E Aut(U/W). Thus the kernel of any cover from Sl is a
homomorphic image of the kernel of v.

The main obstacle here is that U --> W is not necessarily a finite cover. The
following shows that nevertheless we can sometimes get finiteness.
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Theorem 5.2.1 ([39]) Let W be a transitive irreducible permutation structure
which has no proper irreducible superlinked finite cover. If W covers a structure
Wo (by a superlinked finite cover it : W -* WO) then W covers it universally for
the class of all superlinked minimal finite covers of Wo.

Proof. Let it1 : C1 -> Wo be a minimal superlinked cover. Since W is irreducible,
C1 is irreducible too (Lemma 4.1.1). By Lemma 3.3.6 there is a minimal superlinked
finite cover o : M -> Wo which factors through it1 and it. By assumption M is a
trivial cover of W, so we have the result.

As we noted in Section 5.1, if W satisfies the assumptions of Theorem 5.1.4
then the assumptions of Theorem 5.2.1 hold. The best example of such W and
Wo is a vector space over its projective space. This case was analysed in [27] (see
also Theorem 4.4.3 here). It is worth noting that the ideas that we use for strong
types are from the analysis in [27] concerning the situation of a vector space over
its projective space. In [27] they are applied to a classification of all superlinked
irreducible covers of the projective space over a finite field F. Their kernels are
exactly the groups of the form F*lH where H is a subgroup of the multiplicative
group F*.

5.3 Highly homogeneous structures

Another good example for Theorem 5.1.4 is the ordering of rationals. It is shown
in [39] that any finite cover of the rationale has a split covering expansion with
trivial fibre group (see also 4.3.5 here). This is the main tool in the description of
finite covers of highly homogeneous structures given in [39] (cf. Section 3.1.3).

The method of [39] can be described as follows. Let N be a reduct of an Ro-
categorical structure No (as we noted above, (Q, <) is an expansion of any highly
homogeneous structure) and suppose Go < Aut(N) is a finitely generated subgroup
such that Aut(N) = (Aut(No),Go). Let M -+ N be a finite cover of N such that
the corresponding cover of No (obtained from M by adding the No-relations on
N) has a splitting expansion with trivial fibre group. This defines an isomorphism
from Aut(No) onto some HM < Aut(M). The main point of the method is to find
an explicitly described class KN of covers of N such that for every M -> N there
exists a finite G1 < Aut(M) such that the restriction map induces a surjection
Gl Go and the group (HM,GI) defines a cover from KN. This reduces the
problem to a characterisation of the kernels.

The highly homogeneous structures, apart from (Q, <) and the highly transitive
one, are the dense linear betweenness relation, the dense circular order and the
dense separation relation (see [9]). It is a very helpful fact that in the first two
cases we can choose Go < Aut(N) such that the intersection GoflAut(No) is trivial
and every automorphism of N can be presented in the form a g Q, where g E Go
and a,,3 E Aut(No).

There are several observations which make us think that this method can be
applied in more general cases. The first one is that for any open subgroup H of
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the automorphism group of a l o-categorical structure N there exist 9i, .. , gn such
that Aut(N) = (H U {g1,...,g,j)3. This is a consequence of the fact that if W is
a transitive permutation structure and H is a point stabiliser of Aut(W) then the
number of double cosets HgH (g E Aut(W)) is equal to the number of H-orbits
on W (see page 21 of [42]).

On the other hand, in the G-finite case (see 3.4.2) if any type of N over some
c extends to a strongly determined type then adding some tuple of constants ex-
tending c we get an expansion where every type over 0 extends to a strong type.
We can now regard this expansion as a natural candidate for the structure No
described above, and if we have some reduction to the superlinked case (such as
Lemma 3.5.1), then Theorem 5.1.4 can sometimes guarantee a complete charac-
terisation of the finite covers of this expansion. Then the group generated by the
above gl, ... , g,,, becomes a natural candidate for Go. Some examples illustrating
this can be found in [39].

6 Symmetric extensions with abelian kernels
6.1 A strategy
Suppose it : C -+ W is a finite cover. Then for each w E W we have the following
data (the canonical data of the cover):

the fibre group F(w) = Aut(C(w)/w)

the binding group B(w) = Aut(C(w)/W)

the canonical homomorphisms Xw : Aut(W/w) -> F(w)/B(w) (see Lemma
2.1.1).

Here, B(w) is a normal subgroup of F(w), and these should both be regarded as
permutation groups on the fibre C(w) = 7r-'(w). Recall our

Basic Problem: Describe all the finite covers with these data.

We have encountered various results which emphasise the importance of analysing
finite covers with abelian kernels: for example, the nilpotence of the kernel of a min-
imal finite cover (Lemma 3.3.4), the consequent reduction of the splitting problem
to the abelian case (Corollary 3.3.5), and the fact that the kernel of an irreducible
superlinked finite cover is abelian (Lemma 4.1.2). This section is a commentary
on a strategy for carrying out this analysis which was developed in the papers [3]
and [4] by Gisela Ahlbrandt and Martin Ziegler, and refined in the paper [34] by
Wilfrid Hodges and Anand Pillay.

Assume from now on that the binding groups B(w) are abelian. The strategy
is this:

1. Compute the possible kernels of covers 7r : C -f W with the given data
(-these will be closed subgroups of FjWEW B(w));

2. For each possible kernel from (1), parametrise the covers with that as kernel.
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We first put the problem in the slightly wider context of symmetric expansions
with abelian kernel.

6.2 Symmetric expansions of symmetric extensions

Suppose Mo is a symmetric extension of W with abelian kernel KO. So KO is a
closed normal subgroup of Fo = Aut(Mo) and we have the short exact sequence

1->KO ->FO - G-1

where p is restriction to W, and G = Aut(W). We wish to classify (up to isomor-
phism over W) expansions M of MO which are also symmetric extensions of W.
Thus we are interested in closed subgroups F of FO with p(F) = G. Call these full
subgroups of FO. Now consider Fo acting on Ko by conjugation. As KO is abelian,
Iio is in the kernel of this action, and so we get an action of G = I'o/Ko on KO.
From now on we shall usually write Iio additively, with the G-action on the left.
Thus gk = hkh-1, for g E G, k E KO and any h E p-1(g). This makes Ko into
a G-module (or perhaps more accurately, a ZG-module). With this notation, we
have the following basic fact.

Lemma 6.2.1 Suppose either that MO is countable, or that Mo is a finite cover of
W. Then Iio is a topological G-module.

Proof. The extra hypotheses on MO ensure that the restriction map p is an
open mapping (see Lemmas 1.4.2 and 1.4.3). Give G x Ko the product topology.
What is being claimed is that the G-action a : G x KO --+ Iio is continuous. Let
FO = Aut(Mo) and consider the map a : Fo x KO -> KO given by conjugation.
This is continuous, and if 0 C KO is open, then a-1(0) = (p x 1)0-1(0), where
p x 1 : FO x KO -> G x Iio is the obvious map. This is open, so a is continuous, as
required.

Now suppose r is a closed, full subgroup of Fo. Then K = Iio fl r, which we
refer to as the kernel of r, is a closed G-submodule of Iio. We can now divide Part
1 of our strategy as:

(1a). Determine the closed G-submodules of KO.
(lb). Determine which submodules can appear as kernels of closed, full sub-

groups of Fo.

We shall concentrate on (la) here, essentially because we do not know anything
about (1b), beyond what has already been stated in Sections 1.5 and 3.1.2. If the
original symmetric extension is split and arises from a finite cover then Lemma
3.1.4 shows that any closed G-submodule of Ko appears as a kernel. Before giving
some examples, we give a duality which is useful in analyzing submodules of kernels
of finite covers.
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6.3 Applications of Pontriagin duality

6.3.1 The duality

All the material in this section is to be found in Chapter 6 of Pontriagin's book
[47]. Throughout, A will be a Hausdorff topological abelian group which is either
discrete or compact.

The dual or character group of A, written A*, is the set of continuous homo-
morphisms (characters) from A into S, the multiplicative group of the complex
numbers of modulus 1. This is a group under the operation of pointwise multi-
plication: if f, g E A* and a E A then (fg)(a) = f (a)g(a). Moreover, we can
regard A* as a topological group in the following way. For natural numbers k,
let Sk = {e2'r:° : 101 < 1/k}. Then the collection of subsets of A* of the form
{f E A* : f (X) C Sk}, where X is a compact subset of A and k E N, forms a
complete system of neighbourhoods of the identity in A* (see Definition 34 of [47]).
The following result gives a more convenient way of thinking of this topology, and
comes from the proof of Theorem 36 in [47].

Lemma 6.3.1 If A is compact, then A* is discrete. If A is discrete, then A* is
compact. Moreover in the latter case, the topology on A* coincides with its topology
as a subspace of the product space SA. 0

Examples 1. The finite abelian group Zn (with the discrete topology) is self-
dual.

2. If p is a prime, X any set, and A = (Zp)x with the product topology, then
a non-trivial continuous homomorphism X : A -f S has as its image the set of p-th
roots of unity, and its kernel is open. So there exists a finite subset x1,. .. , x,, of
X such that for all f E A, X(f) is determined by f (xl), ... , f (x,,). It is now easy
to see that A* is naturally isomorphic to ZpX, the discrete group of formal (finite)
linear combinations of elements of X with coefficients in Zp (identify Zp with the
group of p-th roots of unity in S and let X correspond to EIExX(f=)x, where ff is
the characteristic function at x).

Conversely, if A is ZpX, then A* is Zp with the product topology.

Evaluation at a E A gives a character of A*, so there is a natural map w
A -+ A**. The fundamental result of Pontriagin ([47], Theorem 39) is that w is
an isomorphism of topological groups. The most important consequence of this
that we shall use is that there is an inclusion-reversing correspondence between the
closed subgroups of A and A*. If C is a closed subgroup of A the corresponding
subgroup of A* is

={fEA*:f(C)=1},
the annihilator of C in A*. The dual of C is naturally isomorphic to A*/4 (Theorem
41 of [47]), and the dual of A/C is naturally isomorphic to,§ (Theorem 37 of [47]).

We can also phrase these results in terms of exact sequences. Suppose that A,
B are topological groups which are either both discrete or both compact. Note
that if 9 : A , B is a continuous homomorphism of topological abelian groups,
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then there is naturally a dual continuous homomorphism 0* : B* . A* (given
by (O*f)(a) = f (0(a)), for f E B* and a E A). The following is then an easy
consequence of the results just cited.

Theorem 6.3.2 If

is an exact sequence of topological abelian groups, either all discrete or all compact,
then the dual sequence

0--+ B*B4A*

is also exact.

We observed an instance of the following result in Example 2 above. It is a
paraphrase of Theorem 45 of [47].

Theorem 6.3.3 The dualising operation sends a direct product of compact abelian
groups to the direct sum of the duals of the factors, and vice versa.

Suppose now that G is a topological group and Y is a compact topological G-
module. Then Y* is a G-module with action given by (gf)(y) = f (g-1 y). It is easy
to see that a closed subgroup X of Y is G-invariant if and only if its annihilator in
Y* is G-invariant. Thus we have:

Theorem 6.3.4 The lattices of closed G-invariant subgroups of Y and Y* are
dual.

We now return to the problem of classifying the possible kernels of a finite cover
7r : C --+ W, having been given the fibre and binding groups F(w) and B(w) (and
the canonical homomorphisms), where the B(w) are abelian. According to our
strategy, we consider the G-module Ko = Ii,,,Ew B(w) (where G = Aut(W)), the
kernel of the free cover with the given data (see Section 2.1), and we want to know
the closed G-submodules of Iio. (If W is transitive, then (for any w c W) the
module KO is the G-module coinduced from the Aut(W/w)-module B(w), with
the action being given via the canonical homomorphism (cf. Section 111.5 of [8]).)
Now KO is compact and so by Pontriagin duality, this problem is equivalent to
determining all the G-submodules of the direct sum

Ka = ® B(w)*.
wEW

Care is needed here in writing down the G-action. If W is transitive, then (for any
w E W) this module is the G-module induced from the Aut(W/w)-module B(w)*,
with the action being given via the canonical homomorphism (cf. Section 111.5 of
[8]). The simplest situation is where the fibre groups and binding groups are all
cyclic of order p. Then KO = F", and KO* is the permutation module FpW (Fp
is the field of p elements, considered as a trivial G-module). The correspondence
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between submodules of the two modules given by the duality is exactly that given
by annihilation in the natural pairing

FW x FpW , Fp

(f, E, wa,,w) - F'wEWawf(w)

6.3.2 Examples

Example 6.3.5 Suppose W is a disintegrated set (so G = Aut(W) = Sym(W)).
Let F(w) = B(w) = Zp, for all w E W and some prime p. Thus I(o = FpW and
Ko is the permutation module FpW. We claim that the only proper, non-trivial
submodule of this is A = (w - w': w, w' E W). Indeed, let x = a1w1 +... + arwr
be a non-zero element of FpW, where the a, are non-zero, and the w; are distinct.
Consider the submodule (x)FpG generated by x. If r = 1 then (by transitivity of
G on W) this is the whole of FpG. If r > 2, take g E G fixing W1, ..., Wr_1 and
moving wr. Then x -gx = ar(wr -gwr), and this is a generator for A (for example,
because G is 2-transitive on W). So (x)FpG contains A. As A is of codimension 1
in FpW, this establishes the claim.

So now, by duality, it follows that the only proper, non-trivial closed submodule
of li o = Fp is the finite submodule consisting of the constant functions.

Remarks. 1. The above argument works assuming only that Aut(W) is prim-
itive on W, and that definable closure in W is trivial: see Theorem 2.1 of [11).

2. The result can of course be proved directly, without mentioning duality, by
making use of the cover pregeometry (cf. Corollary 3.2.4). But conversely the cover
pregeometry can be described very explicitly using the duality. Suppose it : C -> W
is a simple finite cover with all fibre groups isomorphic to F. Then its kernel K can
be identified with a subgroup of Fpv. Let 4)(K) be the annihilator of K in FpW (as
above). It is easy to show for w, w1i ..., w,, E W that w is dependent on w1, ..., wn
in the cover pregeometry determined by 7r if and only if w is linearly dependent on
w1,. .. , w,, modulo 4 (IO (that is, working in the quotient space FpW/,t(K)).

Example 6.3.6 The following results are due to Ahlbrandt and Ziegler, and are
to be found in the paper [3]. However, our presentation of the results is slightly
different.

Let V = V(80, 2) be a countably infinite dimensional vector space over the
field F2 with 2 elements, and G = GL(No, 2) its automorphism group. Then G is
transitive on W, the non-zero vectors in V (which we can also identify with the set
of one-dimensional subspaces of V). We consider finite covers of W where the fibre
and binding groups are cyclic of order 2. (Ahlbrandt and Ziegler also consider the
more difficult case of affine covers of W where the structure groups are isomorphic
to V/(w), for w E W). So, we wish to determine the closed, G-invariant subgroups
of F2 . By duality, this is equivalent to determining the G-invariant subgroups of
the permutation module F2W. We now describe these.
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For any vector space X of dimension n < w over a finite field Fq, and finite
k with 0 < k < n, let [[X]]k be the set of k-dimensional subspaces of X, consid-
ered as a permutation structure with GL(X) acting. If 1 < k there is a natural
homomorphism of GL(X)-modules

13k,! . Fq[[X]]k -4 Fq[[X]]`

given by

13k,l (W) = F''w'El[w]ll w

for w E [[X]]k. (Of course, this can also be defined for permutation modules over
a different field.) It is easy to show that if l < k' < k then there is a non-zero
t E F. such that ,3k,l = t,3k',113k,k' and so im(/3k,i) < im(/3k1,j). So as submodules
of Fq[[X]]1 we have im(/3k,1) for 1 < k < n, and the intersections of these with
ker(131,o). The main result of Part 1 of [3] is that for finite n and q = 2, these
are the only GL(X)-submodules of F2[[X]]1. It is then a straightforward matter to
deduce that the same holds for the infinite dimensional case: any element of the
permutation module has its support contained in a finite dimensional subspace, and
so we can read off from the finite case that it must generate some im(/3k,1) or its
intersection with ker(/31,o). Now, we can identify W with the set of 1-dimensional
subspaces of V, and so we know all the G-invariant subgroups of F2W.

From the duality, we now get the following (the notation is that of [4]).

Theorem 6.3.7 (Ahlbrandt-Ziegler, [3]) The closed, G-invariant subgroups of FW
consist of the submodules

Polk = If E F2 : ExEw\{o}f(x) = OVw E [[V]]k+1}

and the sums of these with the one dimensional submodule of constant functions.
0

With the benefit of hindsight, the above submodules of F2[[X]]1 are recognis-
able as 'well-known' objects from the theory of error-correcting codes: they are
the Reed-Muller codes. On closer examination of the coding-theoretic literature
(notably [1] and [18]), D. Gray discovered that the above result is a special case of
a result of Delsarte (see Theorem 8 of [18]): for arbitrary prime p, the GL(n,p)-
invariant subgroups of Fp[[V(n, p)]]1 are given by the images of the f3k,1 maps, and
their intersections with ker(f31,o). There is, of course a corresponding result for
the infinite dimensional case, and a dual version. So Theorem 6.3.7 holds for all
primes, not just for the prime 2. More details can be found in [26].

Example 6.3.8 We report some work of D. Gray ([29]), which is (in spirit) similar
to that of the previous example, and deals with the case where W = [D]k is the
permutation structure of k-sets from a disintegrated set D (so the automorphism
group here is G = Sym(D)). Let F be any field, and consider the FG-permutation
modules F[D]k, for k < w. Again, for k > 1, there are natural FG-module homo-
morphisms

13k,l :
F[D]k , F[D]'
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given by
Nk,l(w) = EviEiLi'w

for W E [D]k.

Theorem 6.3.9 ( D. Gray, [29]) If D is infinite, the FG-submodules of F[D]k
are given by intersections of kernels ker(Qk,l), where 0 < I < k.

The proof uses the representation theory of the finite symmetric groups, as
developed in the book of G. D. James [41]. In fact, there is an effective algorithm
for determining the complete submodule lattices in the above (they depend only
on k and the characteristic p of F, and the algorithm involves only the checking
of whether certain binomial coefficients are divisible by p ). For our purposes, the
main consequence of Gray's results is (by duality) a determination of the possible
kernels of a finite cover of W = [D]k, with fibre and binding groups of order p.

6.4 Derivations and H,'

In this section, we follow [4] and [34] (particularly Section 5) rather closely. We
develop some algebraic machinery for attacking the second part of our strategy: for
a fixed symmetric extension Co of W with abelian kernel, parametrise the expan-
sions with a particular kernel K which are still symmetric extensions of W. In our
applications, Co will be a free finite cover with given canonical data, and we shall
parametrise covering expansions with kernel K up to conjugacy of their automor-
phism groups in Aut(Co). This is a priori a finer classification than classification
up to isomorphism over W. However this distinction does not create any practical
difficulties.

Definition 6.4.1 If G is a group and A is a G-module, then a derivation from G
to A is a map d : G A which satisfies d(gh) = d(g) + gd(h) for all g, h E G.
Denote the set of all these by Der(G, A). Note that the sum of two derivations is
again a derivation, so Der(G, A) is in fact an abelian group. An inner derivation
is a derivation of the form d,, (for a E A) where da(g) = ga - a for all g E G. The
inner derivations form a subgroup of Der(G, A). The quotient group is denoted
by H1(G, A), and is referred to as the first cohomology group of G on A. If A is a
topological G-module then the continuous derivations form a subgroup Der,(G, A)
of the group of all derivations, and this clearly contains all the inner derivations.
We denote the quotient group of Der,(G, A) by the inner derivations by H' (G, A).

Suppose now that Co is a symmetric extension of W with abelian kernel KO.
Thus we have a surjection µ : Aut(Co) -f Aut(W) whose kernel is KO. As we
have already remarked, conjugation in Aut(Co) (denoted generally by gh = hgh-1
for g, h E Aut(Co)) gives an action of G = Aut(W) on Ko which makes Iio into a
G-module, which we write additively. In practice, we will always work in situations
where Ii0 is actually a topological G-module (see Lemma 6.2.1).

Suppose K is a G-invariant subgroup of Iio such that there exists Ho < Aut(Co)
with Hon Iio = K and µ(H0) = G. Note that G = Ho/Hon KO < Aut(Co)/K. So
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there is an embedding oo : G , Aut(Co)/K given by oo(g) = (p-1(g) n Ho)K.
Denote by µ the homomorphism Aut(Co)/K -+ Aut(W) induced by P. Clearly
µoo = 1G, the identity on G. In fact, this establishes a bijection between the set
of subgroups H of Aut(Co) which satisfy µ(H) = G and H fl Ko = K, and the set
of embeddings a : G -+ Aut(Co)/K satisfying µo = 1G.

Now, suppose a : G , Aut(Co)/K is any embedding such that µo = lG. Let
do : G -> Ko/K be defined by d,(g) = a(g)ao(g)-1 (note that this is indeed an
element of Ko/K, not just an element of Aut(Co)/K). On the other hand, given a
derivation d : G -> Ko/K, define od : G -+ Aut(Co)/K by od(g) = d(g)ao(g). We
have the following result from [34] (Proposition 16):

Lemma 6.4.2 (i) The map a --> d, is a bijection between the set of embeddings
a : G -- Aut(Co)/K such that µo = 1G, and Der(G, Ko/K). Its inverse is the
map d : ad.

(ii) If Co is countable and Ho is a closed subgroup of Aut(Co), then the map in
(i) induces a bijection between the subset of continuous maps a and Derc(G, K0/K).

Proof. (i) We check that if a is an embedding G - Aut(Co)/K, then dQ is a
derivation. Remember that the action of G on Ko (and so on Ko/K) is given by
conjugation in Aut(Co). So, for g E G and a E Ko/K we have

ga = ao(g)aao(g)-1 = a(g)aa(g)-1

computed in Aut(Co)/K. Thus,for g, h E G,

dv(gh) = a(gh)ao(gh)-1 =
a(g)a(h)ao(h)-1ao(g)-1

= (a(h)ao(h)-1)'('s)a(g)ao(g)-1

= a(g)ao(g)-1 + ao(g)dv(h)ao(g)-1 = dv(g) + gdv(h)

(ii) The extra hypotheses imply that K is a closed subgroup of Iio and that a'o
is continuous (by Corollary 1.4.4). The statement now follows immediately from
the definitions and (i).

So now:
1. we have a bijection between Der(G, Ko/K) and the set of subgroups H of

Aut(Co) which satisfy µ(H) = G and H fl Iio = K;
2. if Co is countable and Ho is closed, the above bijection sets up a bijection

between Der,(G, Iio/K) and the set of closed subgroups H of Aut(Co) which satisfy
µ(H)=G and HfK0=K.

According to our strategy for classifying symmetric expansions of a given sym-
metric extension up to isomorphism over the base structure, what we are interested
in is classifying groups H as in (2) above up to conjugacy in Aut(Co). The next
lemma is Proposition 17 of [34]. We omit its proof (it is a simple exercise). Denote
the derivation corresponding to the subgroup H in (1) above by dH. Then:
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Lemma 6.4.3 Let H and H' be subgroups of Aut(Co) such that p(H) = p(H') =
G and H n KO = H' n KO = K. Then H and H' are conjugate in Aut(Co) if and
only if dH and dH, differ by an inner derivation.

Corollary 6.4.4 ([34], Corollary 18) Suppose Co is countable and K is a closed,
G-invariant subgroup of Iio such that there is a closed subgroup Ho of Aut(Co) with
p(Ho) = G and Ho n KO = K. Then there is a bijection between the cohomology
group HI (G, Iio/K) and the set of Aut(Co)-conjugacy classes of closed subgroups
H of Aut(Co) which satisfy p(H) = G and H n KO = K.

The following is one of the most important consequences of this. We state it
for finite covers, but one could formulate a similar result in terms of symmetric
extensions.

Corollary 6.4.5 Let W be a countable permutation structure. Suppose 7ro : Co ->
W is a split finite cover with abelian kernel Iio and If is a closed Aut(W)-invariant
subgroup of Iio. Then there is a covering expansion of ro with kernel K. If
H'(Aut(W),Iio/K) = {0}, then it is unique (up to isomorphism over W). In
particular, any covering expansion of lro with kernel Ii is split.

Proof. Existence of a split covering expansion 7r : C -- W of 7ro with kernel
Ii follows from Lemma 3.1.4. By Corollary 6.4.4 and our assumption, the auto-
morphism group of any covering expansion of lro with K as kernel is conjugate in
Aut(Co) to Aut(C). In particular, the finite cover is isomorphic over W to it and
is split.

Remarks 6.4.6 1. A re-statement of Corollary 6.4.4 is that the group H' (G, Iio/K)
parametrises isomorphism classes of symmetric expansions of the symmetric exten-
sion Co which have kernel K.

2. The bijection obtained in Corollary 6.4.4 depends on the choice of Ho, or,
equivalently, the choice of ao. If there is a continuous splitting r : G --> Aut(Co)
of p, then, of course, we can take Ho = KT, where T = im(r). Equivalently, we
let ao(g) = r(g)K (this is the approach taken in [4], where Co is a split (principal)
cover of W).

3. The fact that the bijection from the Corollary depends on the choice of ao
means that we do not have a natural parametrisation. Note however that what
we have constructed is an action of H.', (G, Ko/K) on the set of Aut(Co)-conjugacy
classes of closed subgroups H of Aut(Co) which satisfy p(H) = G and Hnlio = K.
This is regular (that is, transitive and with all non-identity elements acting without
fixed points), and is independent of the choice of ao. We thank Martin Ziegler for
pointing this out to us.

4. At this point, we should mention that there is a subtle difference between
the classification we are proposing here and what is proposed in [4] and [34]. The
approach there considers a principal cover it : Co W with abelian kernel (-
so the necessary assumption is that the fibre groups are abelian), and classifies
covering expansions up to conjugacy in Aut(Co). The strategy we are following
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instead involves considering a free finite cover 7r : Co --> W with abelian kernel
(- so we are assuming that the binding groups are abelian, but the fibre groups
could be non-abelian). We then classify covering expansions up to conjugacy in this
Aut(Co). So our approach is a little more general, but, of course, it may produce
a slightly different answer. We doubt, however, that this should present any real
problems.

5. Recall that a (countable) structure W has the small index property if any
subgroup of index less than 20 in Aut(W) is open. Thus, the topology on Aut(W)
can be recovered solely from the abstract group structure of Aut(W). Proposition
1.5.3, due to Hodges and Pillay ([34]) show that (with the hypotheses of 6.4.4) if W
has the small index property, then any derivation in Der(G, Ko/Ii) is continuous,
and so H1 (G, Ko/K) = H1(G, Ko/K).

Experience suggests that the groups H1 and H1 should be small (and quite
likely to be zero) for many respectable No-categorical structures. Anything other
than this situation should be regarded as exotic (we shall say more on this in
Section 7). But of course, the question is how can one compute the groups H1 and
H,1? In some cases, the hard work has already been done by group theorists and
sometimes their results can be used or adapted. An example of this will be given
in Section 6.5. In Section 7 we shall adapt some of the well-known machinery from
general group cohomology to our purposes and show how it can sometimes be used
to calculate (or at least estimate) H1 and H1. To start off with here is a very easy,
but useful lemma.

Lemma 6.4.7 Let I' be a topological group and M a continuous r-module. Let
N be a closed submodule of M and suppose that H1(I', M/N) and H1(I', N) are
trivial. Then H' (T, M) is trivial.

Proof. Suppose d : T --> M is a continuous derivation. By composing with the
natural map M M/N we get a continuous derivation I' -- MIN and so, by
assumption, there exists a E M such that (d - da)(g) E N for all g E I'. But then,
as d - da is also continuous, there exists b E N such that d - da = db. So d = da+b
is inner.

6.5 Finite covers of V(l 0, 2) and [D]k.

We now return to one of the situations considered by Ahlbrandt and Ziegler in
[4] (see Example 6.3.6). So, let V = V(l o,2) be a countably infinite dimensional
vector space over the field with 2 elements, and G = GL(11o, 2) its automorphism
group. Let W = V \ {0}. We consider finite covers of W where the fibre and
binding groups are cyclic of order 2. Let 7ro : Co - W be the free cover of W
with fibre and binding groups cyclic of order 2 (and each fibre of size 2). Let Ko
be the kernel of this. Note that by Lemma 2.1.4 iro splits. In 6.3.6 we described
the closed G-invariant subgroups K of Ko: a result which was deduced from the
parallel situation of finite-dimensional V.

Ahlbrandt and Ziegler show that
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Theorem 6.5.1 For each possible kernel K we have H,'(G,KoIK) = {0}.

From this and Corollary 6.4.5 we obtain immediately.

Corollary 6.5.2 All finite covers of W with fibres of size 2 split. Any such finite
cover is determined (up to isomorphism over W) by its kernel, and the possibilities
for the kernels are given in Theorem 6.3.7.

Ahlbrandt and Ziegler deduce Theorem 6.5.1 from known results about the van-
ishing of the first cohomology groups of the finite general linear groups GL(n, 2)
acting on certain natural modules (duals of exterior powers of V(n, 2) (if n > 4)),
together with results on envelopes in totally categorical structures. We shall de-
scribe the use of the finite group theoretic results, but avoid mentioning envelopes,
substituting instead the following, slightly ad hoc result, taken from [26].

Lemma 6.5.3 Let I be a Hausdorff topological group and M a compact topological
I'-module. Suppose there exists (Gi : i < w), an increasing chain of subgroups of
r such that G = U2<<,, Gi is dense in F. Suppose also that for each i we have
an open, Gi-invariant subgroup Mi of M, and that Mi+1 < M, for all i < w and
ni<u, Mi = {0}. Suppose further that for all i, any continuous derivation from Gi
to M/Mi is inner. Then any continuous derivation d : r - M is inner.

Proof. Note first that if two continuous derivations r -f M agree on a dense
subgroup, then they must be equal. So (as inner derivations are continuous) it will
suffice to prove that b = dIG is inner. The hypotheses imply that M is metrizable,
with a metric 0 such that the diameters of the Mi tend to zero.

For every i < w there exists ai E M such that for all g E Gi we have

b(g) + Mi = gai - ai + Mi.

By compactness of M we may assume that the ai converge to some a E M. Let
da denote the inner derivation obtained from a. Thus, for g E Gi, for every j > i
there exists mj E Mi such that

0(b(g), da(g)) = 0(ga.i - aj + m1, ga - a).

Now, the nib tend to 0 as j tends to infinity, and so (by continuity of the I-action)
0(b(g), da(g)) can be arbitrarily small. So b(g) = da(g). But this holds for all i,
and so we conclude that d = da, as required.

Proof of 6.5.1. We use the lemma with F = GL(V) and M = Ko/K. Remember
that KO = F2' and K is a closed, F-invariant subgroup of Ko. Let (Vi : i < w) be
an increasing chain of finite dimensional subspaces of V (of dimension at least 4)
with union the whole of V. Let Ti be a complement to V, in V, and choose these
so that Ti > Ti+r for all i. Let

Gi={gEF:gV2=Viandgx=xVxETi}.
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Then the Gi form an increasing chain whose union is dense in F. Let Ki be
those functions in Iio which are zero on Vi. Thus, Ko/Iii is isomorphic to FvA{o}
Let Mi = (K + Ki)/li. Then

M/Mi = (Ko/K)/(K + Ki/K) = Kol (K + Ki) - (Ko/Ki)l (K + Kil Ki)

and all these isomorphisms hold as isomorphisms of Gi-modules. But now we claim
that Theorem 4.1 of [4], and the description of the possibilities for K given in
Theorem 3.1 (ibid.) show that any derivation from Gi to M/Mi is inner. Put
more explicitly, what we want to show in order to apply our lemma, is that
H1(Gi, M/Mi) = {0}. Fix i, and to ease notation write X = Vi. Now, Gi can
be identified with the finite general linear group GL(X), and M/Mi is a quotient
module of the GL(X)-module F2 \{o} The finite-dimensional version of the re-
sults in 6.3.6 tell us precisely what are the possibilities for M/Mi. Moreover, the
composition factors of M/Mi are well-known GL(X)-modules: they are (duals of)
exterior powers of X (see lemma 4.3 of [4]). Results of G. B. Bell ([7]) show that the
the first cohomology of GL(X) on these modules is trivial, and so (for example, by
6.4.7) H1(GL(X),M/Mi) = {0}. The lemma is now applicable, and this finishes
the proof of 6.5.1.

Remark 6.5.4 A completely analogous result for the case of finite covers of the
projective space of a countable dimensional vector space over the field with p ele-
ments (for a prime p), and fibre groups of order p is given in [26].

The following result is proved using similar methods, but making use of the
description of kernels given in 6.3.8 in place of 6.3.6.

Theorem 6.5.5 ([26]) Let W = [D]k be the Grassmannian of k-sets from a count-
ably infinite disintegrated set D. Then any finite cover it : C - W with fibre
groups cyclic of prime order is split. Together with the results in 6.3.8, this gives
a complete classification of all such covers.

We will not give any details of the proof. Let it suffice to say that the case
p = 2, k > 2, is complicated by the fact that some non-trivial cohomology groups
are involved: essentially because there are two conjugacy classes of closed full
subgroups of Aut(Co) which have trivial kernel (cf. Example 3.1.3).

We remark that (with W as above) it follows that any finite cover 7r : C ----+ W
with fibre group of odd order is split. By 3.3.5, it suffices to prove this for the case
where the kernel is an elementary abelian p-group (for all odd primes p). By 2.1.1,
and the fact that any non-trivial finite homomorphic image of Aut(W/w) has even
order, the fibre and binding groups of 7r are equal. It is then easy to reduce to the
case where the binding groups are actually Zp. This is then handled by Theorem
6.5.5.

6.6 Cohomology and two-graphs

Let X be any set and let V be the vector space over F2, the field with 2 elements,
of all functions from the set of 2-element subsets of X to F2. We identify the
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elements of V with the graphs on X. Then addition in V is the operation of
symmetric difference on edge sets. Let V° be the subspace of all complete bipartite
graphs (including the null and complete graphs). We can look at Vo as the set of
all switching operations: switching a graph corresponds to adding to it a complete
bipartite graph. Thus the switching classes are the cosets of V° in V.

Let G be the automorphism group of a two-graph W = (X, T), and let (X, R)
be any graph giving rise to this two-graph. Recall that any two such graphs are in
the same switching class, so we may define a function d : G Vo by g ' (gR - R).
As noted in [10], this is a derivation. The corresponding element y E H1(G,V°)
is called the first invariant of T. Theorem 3.1 from [10] asserts that y = 0 if and
only if there is a graph R' E Vo + R such that G is the automorphism group of
(X, R'). Recall that in Section 2.3 we constructed a `double cover' it : M --p W
where M = (X*, R*). It is noticed in [39] (Theorem 3.3) that this is strongly split
if and only if G preserves a graph on X in the same switching class as R.

This provides an alternative approach to showing that the double cover in Ex-
ample 2.3.1 is non-split. Recall that there (X, R) is the `random graph' and (X, T)
the corresponding two-graph. We indicated there that G, its automorphism group,
acts doubly-transitively on X. In particular, G cannot preserve any graph on X in
the same switching class as R. So by the above remarks, ,7 here is not zero and the
double cover M X is not strongly split. As point stabilisers in G are irreducible,
this means that M - W is not split (by Lemma 3.1.2).

The invariant y has an interpretation in terms of the cohomology groups in-
troduced in Section 6.4. Indeed, let ir° : M° -* W be the free reduct of it with
fibre and binding groups cyclic of order 2. So the kernel here is K° = FF and the
kernel K of it is the submodule consisting of the constant functions. The stabiliser
S of X+ is a closed complement to K° in Aut(Mo). In the notation of Section 6.4,
let H° = KS, let H = Aut(M), and let dH be the derivation dH : G , K°/K
given by Lemma 6.4.3. Now recall that V° is identified with the set of switching
operations, which was also identified with F2 /F2 (see Section 2.3). It is easy to
show that (with these identifications) y is the element of H' (G, F2 /F2) which dH
gives rise to.

7 Computing cohomology groups

7.1 Dimension shifting and Shapiro's lemma

In this section we give, adapted for our purposes, some results and a technique
(known as dimension shifting) which are well-known in the cohomology theory of
groups.

Definition 7.1.1 If G is a group and M a G-module then we define the zero-th
cohomology group H°(G, M) to be the elements of M fixed by all elements of G.
Note that if G is a topological group and M a topological G-module, then this is
actually a closed subgroup of Al.
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Lemma 7.1.2 ('The long exact sequence') Suppose G is a group and

O--+K,M- N- 0
is an exact sequence of G-modules. Then there is an exact sequence of abelian
groups:

0 , H°(G, K) , H°(G, M) , H°(G, N) -. H'(G, K) -> H'(G, M) , H'(G, N).

If, moreover, G is a topological group and the short exact sequence is a sequence
of topological G-modules in which the homomorphisms are continuous, open maps,
then there is a long exact sequence as above in which the H1 terms are replaced by
HC1.

Proof. The first part is very well-known and can be found in any book on group
cohomology (eg. [8] Proposition III.6.1(ii')). All but one of the maps in the long
exact sequence are induced by the maps in the short exact sequence in an obvious
way. The map 0 : H°(G, N) . -> H'(G, K) is known as the connecting map, and is
obtained as follows (to ease notation, suppose K is contained in M and identify N
with M/K). Let a = a+li E M/Ii be fixed by all elements of G. Then ga-a E K
for all g E G and it is easy to check that dc, : G -j K given by dd(g) = ga - a is a
derivation, and modulo inner derivations into K this depends only on a. So we get
a well-defined homomorphism H°(G, N) - H'(G, K). The topological version of
the result can now be checked using the proof of the group theoretic result (the force
of the assumption that the maps in the short exact sequence are continuous, open
maps is that K is topologically isomorphic to its image in M and N is topologically
isomorphic to M quotiented by this).

Remarks 7.1.3 1. There are various circumstances in which in a short exact
sequence of topological groups, the maps (assumed to be continuous) are automat-
ically open maps. For example, this happens if the groups are compact, or if the
groups are Polish groups (see ([42], Proposition 6.3) for the latter).

2. Of course, there are defined, for any group G and G-module M, cohomology
groups Hn(G, M) for any n < w, and the long exact sequence can be continued to
involve these. For example, the group H2(G, M) parametrises equivalence classes
of group extensions 1 -+ M --+ E -> G -p 1. It is not clear, however, how to make
use of these in our context (that of symmetric extensions of a given base structure),
or indeed what is the appropriate category in which to develop the general cohomo-
logical machinery. It does not seem to be adequate simply to consider continuous
2-cocycles etc. to single out the particular extensions which interest us.

3. Our main use of the long exact sequence will be to effect a trick known
as `dimension shifting': we shift a problem about computing H1 to one about
computing H°. The procedure, roughly, is this. We want to compute H' (G, K) for
some G-module K. Suppose we can embed K in a module M for which we know
H'(G, M). Then by the long exact sequence, if we can compute H° of K, M and
M/K, we can read off (at least the size of) H'(G, K).
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All this relies on having a good supply of G-modules whose cohomology we know
about. In our context, the appropriate modules are kernels of free finite covers. In
the group theoretic terminology (at least if the base W of the cover is transitive)
these modules are coinduced from a finite module for the stabiliser of a point: the
relevant module is the binding group at that point. The next lemma is then seen as
a special case of Shapiro's lemma in group cohomology (cf. [8], Proposition 111.6.2),
and it tells us how to compute the cohomology of the coinduced modules. We give a
direct (bare hands) proof of this result which avoids mentioning coinduced modules
and any machinery from group cohomology.

Lemma 7.1.4 (Shapiro's lemma) Let W be a transitive permutation structure and
G = Aut(W). Suppose r : C --+ W is a free finite cover with abelian kernel K.
Let w E W, H = Aut(W/w) and A = B(w) = Aut(C(w)/W). Then for i = 0, 1
we have

H'(G, K) = H'(H, A).

Moreover H' (G, K) = H' (H, A).

Proof. Case i = 0. Clearly we get a map H°(G, K) -> H°(H, A) by restriction
of K to C(w). Conversely, if a(w) E A is fixed by H, let k E K restricted to
C(w) equal a(w). For each w' E W let g E G be such that gw = w' and define
a(w') E B(w') to be the result of conjugating k by g and restricting to C(w'). This
is independent of the choice of k and g, and the resulting a E K is fixed by G. The
two maps we have described are mutual inverses, and hence the result.

Case i = 1. It is clear that any derivation G -+ K gives rise to a derivation
H -> A. We show that any b E Der(H, A) extends to some d E Der(G, K); any
two such extensions differ by an inner derivation; and an inner derivation extends
to an inner derivation. The proof is a short computation, but it might help if
we rehearse the notation a little further. For w' E W we denote by B(w') the
restriction of K to C(w'). Then K = IIw'EW B(w'), that is, functions f with
domain W such that f(w') E B(w') for all w' E W. We can also regard B(w) as
a subgroup of K: identify it with the functions in K which have support w'. With
these identifications, for g E G, f E K and w' E W we have that the G-action on
K is given by (gf)(w') = g(f (g-1w')) (-this is g applied via the module action to
the element f(g-lw') of B(g-1w'), which we are regarding as an element of K).

So now let b E Der(H, A). Let r : W -+ G be such that r(w')w = w' for all
w'EW,andr(w)=1. For g E G define d(g) E K by setting, for w' E W:

d(g)(w') = -gr(g-lw)S(r(g-1)-lg-lr(w ))

Then, for g, h E G we have:

d(gh)(w') = -ghr(h-lg-lw)S(r(h-lg-1w)-lh-lg-Ir(w'))

=
-ghr(h-lg-lw')S([r(h-lg-lw')-1h_lr(g-lw')][r(g-1w)-1g-lr(w')])

=
-ghr(h-lg-lw')[r(h-1g_1w )-lh-lr(g-1w)S(r(g-1w')-lg-lr(w'))
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+b(r(h_lg-1w)-1h_1r(g-1w'))]

= d(g)(w') + g(d(h)(g-1w'))
So d(gh) = d(g) + gd(h), whence d is a derivation. To check that d agrees with

6 on H note that if g E H then our formula gives d(g)(w) = -gb(g-1). As b is a
derivation, 6(1) = 0 and applying the product rule to the equation gg-1 = 1 gives
that g6(g-1) + 6(g) = 0. So indeed, d(g)(w) = b(g).

Now we show that any two extensions of b differ by an inner derivation. Equiv-
alently, we show that if b = 0, then any extension d E Der(G, K) of b is inner.
Indeed, given such a d we define f E K as follows. Let g E G and set

f(gw) = g(d(g-1)(w))

(This is g applied to an element of B(w).) To check this is well-defined, note that
if he H then

gh(d(h-1g_1)(w))
= gh((h-ld(9-1))(w)) = g(d(9-1)(w))

Let g E G. For w' E W, let g' E G be such that gg'w = w'. Then

(gf -f)(w)=9(f(g-lw))-f(w)
= gg'(d(g'-1)(w)) - 99 (d(g'-1g-1)(w))

= gg'((d(g'-1) - d(g'-1) - 9 -1d(g-1))(w))

_ -g9'(9 -1(d(g-1)(9 w))) _ -g(d(g-1)(9 w))

= (-gd(9-1))(w') = d(g)(w').
So d(g) = g f - f, as required.

The fact that an inner derivation 6 in Der(H, A) extends to inner derivations
in Der(G, K) follows from the above and the observation that b can be extended
to some inner derivation. Indeed, suppose that a E A is such that 6(h) = ha - a
for all h E H. Then a can be regarded as an element of K, and so b is extended
by the inner derivation d(g) = ga - a (for all g E G).

The proof is complete, apart from our assertion that all the above remains
true if we consider only continuous derivations. So suppose that b : H , A is
continuous. We must show that d : G -> K as defined above is also continuous.
So take g E G and W1, ... , wn E W. It is enough to find an open subgroup H1
of G such that if h E H1 then d(gh)(wi) = d(g)(wi). Thus we must ensure that
(gd(h))(wi) = 0, that is d(h)(g-lwi) = 0 for i = 1,...,n. Clearly we may take
H1 < H and H1 fixing each g-lwi. Then our requirement is that

b(r(g-1wi)_1h_1r(g-1wi))
= 0.

Let Ho = {s E H : 6(s) = 0}. As 6 is continuous and A is finite, this is an open
subgroup of H. Thus

H1 = Aut(W/w,9_1w1,...,g-1wn) fl n r(g-1wi)Hor(9-lwi)-1
i=1
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is an open subgroup of G satisfying our requirements. 0

Computation of the groups H'(H, A) is, in the G-finite case, a problem about
finite groups:

Lemma 7.1.5 Suppose H is a topological group and A a finite topological H-
module. Suppose further that H has an irreducible closed subgroup T of finite
index. Then T acts trivially on A and:

(i) H°(H, A) = H°(H/T, A);
(ii) HC' (H, A) H' (HIT, A).
In particular, these groups are finite.

Proof. It is clear that T acts trivially on A. We prove (ii). If d : H -p A is a
continuous derivation, then d restricted to T is actually a homomorphism, so must
be the zero map. Thus d induces a derivation HIT - A, and the result follows
easily. 0

7.2 Finiteness results

We now use the dimension-shifting technique to prove some results about finite
covers. First, for suitable permutation structures W, we describe the minimal
finite covers of W which have finite kernels. The result (Theorem 7.2.1) is less
elegant than the results of Section 4, but is more general. The key idea in the
proof (see Lemma 7.2.4) is an application of dimension shifting. We then show
that, given certain chain conditions on covers described in Section 7.2.2, a similar
trick can be used to prove that the cohomology groups H' (Aut(W), Ko/K) from
Corollary 6.4.4 have to be finite. All the results here are taken from [25].

7.2.1 Minimal covers with finite kernels

In this section we shall outline the proof of the following result (taken from [25]),
which was previously stated as a conjecture in [24]. The key step is Lemma 7.2.4.

Theorem 7.2.1 Let W be a countable, transitive, irreducible, permutation struc-
ture with automorphism group G = Aut(W). Suppose that G has finitely many
orbits on triples from W, and that for all x, y E W, each of Aut(W/x) and
Aut(W/x, y) has a smallest closed subgroup of finite index. Then there is a natural
number r such that if it : C ---+ W is a minimal finite cover with finite kernel K,
then K can be generated by r elements.

Henceforth, the hypotheses of the theorem which relate to W will be in force.
Recall that if W is irreducible, then a minimal finite cover of W is also irreducible
(4.1.1), and if the kernel of an irreducible finite cover is finite, then it is central in
the automorphism group (4.1.2) and the cover is minimal. Recall also that by the
rank of a finite abelian group, we mean the minimum number of elements needed
to generate it, and that we call a finite cover with finite kernel superlinked. The
first two lemmas reduce the proof of the theorem to computation of a cohomology
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group. Their proofs are routine, if somewhat technical, and we omit them. See [25]
for more details.

Lemma 7.2.2 Suppose there is a non-trivial, minimal superlinked finite cover 7r :

C ---+ W with kernel K of rank r. Then for some prime p there is a minimal
superlinked finite cover of W whose kernel is an elementary abelian p-group of
rank r.

For a prime p, let Fp denote the field with p elements (and consider this as a
trivial G-module). We consider Fp as a topological G-module (with the product
topology and G-action (gf)(w) = f (g-lw) for g E G, f E F , w E W). There is
a natural G-submodule isomorphic to the trivial module Fp, namely the constant
functions W --> Fp. Denote this by A.

Lemma 7.2.3 There exists a natural number n (depending only on W) with the
following property. Suppose that H' (G, Fp / ) is finite, of cardinality pt. Let
r : C -> W be a minimal, superlinked finite cover whose kernel is an elementary
abelian p-group of rank r. Then r < t + n.

We omit the proof (the main point is, of course, the machinery in Section 6.4),
but we shall say what n is here. By assumption, there is a number I such that any
continuous finite image of the stabiliser of a point in W has size at most 1. By (2.1)
of [17] there exists an integer n such that if T is a finite group of size at most I and
0: S - T is a Frattini cover with kernel Z, then Z has rank at most n.

The theorem now reduces to the following lemma, whose proof uses the dimen-
sion shifting trick.

Lemma 7.2.4 Let W be a countable, transitive, irreducible, permutation structure
with automorphism group G = Aut(W). Suppose that G has finitely many orbits
on triples from W, and that for all x, y E W, each of Aut(W/x) and Aut(W/x, y)
has a smallest closed subgroup of finite index. Then there is a natural number t
such that for every prime p, we have

H'(G,Fp /0)I <pt.

Proof. Let K = Fp /A, and let W(2) denote the set of ordered pairs of distinct
elements of W. Clearly, G acts on this. Consider the (topological) G-module Fp (2)
and the continuous map a : Fp - Fp(2 given by a(f)((x, y)) = f (x) - f(y),
for f E FW and (x, y) E Wi2i. The kernel of a consists of the constant functions
in Fp , and so a gives a continuous embedding of K into Fp (2) . We are now in
a position to apply the Long Exact Sequence (7.1.2) and the 'dimension-shifting
trick' described in 7.1.3(3) to the short exact sequence

0-+li->FP(2)_li
0
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where Ii = FP(2)

Let R1,. .. , R3 be the G-orbits on W(2). Then

(G,FP
4=1

If (x, y) E Ri, then by Shapiro's lemma (7.1.4)

Now, a continuous derivation into the trivial module is just a continuous homo-
morphism. So HI (Gx,y, Fp) is just the largest elementary abelian p-group which
is a continuous image of Gx,y. By assumption, there is an absolute (finite) bound
on this, independent of p. So there exists a natural number m such that for any
prime p,

IHC(G,FP 2))I < m.

Now, by the long exact sequence (Lemma 7.1.2) applied to the above short
exact sequence:

IH'(G,K)I S IHc(G,F; `2')IIH°(G,K)I
We shall show that there is a bound (independent of p) on the rank of H°(G, K).

Apply Pontriagin duality (see Theorem 6.3.2) to the exact sequence of compact
G-modules:

We get an exact sequence of discrete G-modules

0-(K)*-FpW(2)-FpW -+Fp-*0.

Here, the map
)3=a*:FpW(2)- -+FFW

is given by /3(x, y) = x - y.
Under this duality, fixed points in K correspond to co-fixed points of (K)* (that

is, submodules L where (K)*/L is the trivial module Fp). So

H°(G, K) = H°(G, ker(13))

where, for a G-module M,

H°(G,M)= M/(gm-m:g E G, m E M)

is the largest quotient of M on which G acts trivially. Now, it is easy to check that

ker(,3) = ((x, y) + (y, z) + (z, x), (x, y) + (y, x) : (x, y, z) E
W(3)).

By assumption, there are only finitely many G-orbits on triples and pairs of distinct
elements from W. Let {(xi, yi, z;) : i < 1} and {(xi, yi) : i < s} be representatives
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for these orbits. Given any (/x, y, z)
E

W(3), there exist g E G and i < I such that
g(x, y, z) _ (xi, yi, zi). Then (x, y)+(y, z)+(z, x) and (xi, yi)+(yi, zi)+(zi, xi) are
in the same coset of (gm - m : g E G, M E ker(,6)). Similarly, for any (x, y) E WO)
there exists a j < s such that (x, y) + (y,x) and (xi, yi) + (yi,xi) are in the same
coset of (gm - m : g E G, m E ker(,3)). This shows that the rank of H0(G, ker(/3))
is at most s + 1, which concludes the proof.

Theorem 7.2.1 now follows immediately from the preceding lemmas.

Remark 7.2.5 Bounds for r in Theorem 7.2.1 can be read off from the above
proof. The proof given in [25] avoids the use of Pontriagin duality and gives slightly
better bounds. Alternative proofs of Theorem 7.2.1 have recently been given by E.
Hrushovski (private communication) and J. Koshan ([45]).

7.2.2 The dcc on covers

The definitions and results in this section are taken from Section 5 of [27]. However,
the idea is really due to Ahlbrandt and Ziegler in [2].

Definition 7.2.6 Suppose a : C , W is a finite cover of the permutation
structure W. Let µ : Aut(C) , Aut(W) be the restriction map. We say that
a : C , W has the descending chain condition on covers of W (dcc, for short) if
any chain

Aut(C)>G1>G2>...
of closed subgroups satisfying µ(Gi) = Aut(W) is finite. We say that it has the
descending chain condition on quasi-covers of W (qdcc, for short) if any chain

Aut(C/W)>K1>K2>...

of closed normal subgroups of Aut(C) is finite.

Remarks 7.2.7 1. If the kernel of 7r is abelian then qdcc implies dcc. If also r
is split, then dcc implies qdcc.

2. Note that the example of 6.3.6 shows that there are finite covers of Ro-
categorical structures not having the ascending chain condition on covers. We do
not know of an lo-categorical W not having dcc on all of its finite covers.

Definition 7.2.8 Let W be a countably infinite permutation structure and < a
linear ordering on W of type w. Define a partial ordering << on W by saying that
a << b if and only if there exists g E Aut(W) such that ga = b and gc < b for all
c < a. Say that < is a nice ordering of W if (W, <<) has no infinite antichain.

Ahlbrandt and Ziegler [2] show that the Grassmannian of k-sets from a disin-
tegrated set, and the Grassmannian of k-dimensional subspaces from a countably
infinite vector space over a finite field have nice orderings. It is easy to show that
any enumeration of the rationals (as an ordered set) is a nice ordering. More inter-
estingly, M. Albert and A. Chowdhury ([5]) have shown that the Grassmannian of
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ordered k-sets from the rationals has a nice ordering, thereby answering a question
raised in the original version of these notes. It is an easy observation that if Aut(W)
has a transitive cyclic subgroup, then W has a nice ordering. So, for example, the
random graph has a nice ordering. The following are taken from Section 5 of [27].

Lemma 7.2.9 If W has a nice ordering and 7r : C -* W is a finite cover, then
C has a nice ordering.

Theorem 7.2.10 Suppose W has a nice ordering. Then any finite cover 7r : C --
W has dcc and qdcc.

7.2.3 Finiteness of H,.1

Given a structure W and a finite cover 7r : C -> W with kernel K, it is natural
to ask whether knowing K determines 7r up to finitely many possibilities. In the
context of totally categorical structures (and working also with affine covers as
well as finite covers), the statement that this question has an affirmative answer
has become known as 'Ziegler's Finiteness Conjecture.' In fact, the conjecture is
now known to hold more generally for smoothly approximated structures W. The
proof of this is an elegant compactness argument using quasifinite axiomatizability
of these structures. Full details will appear in the final version of [16], but a sketch
can be found in the notes [14].

In this section we show how dimension-shifting and appropriate chain conditions
also give Ziegler's finiteness conjecture for finite covers with abelian kernel (the
results are applicable, for example, to the cases where W is a Grassmannian of a
disintegrated set, or of a projective space over a finite field). It should be noted
however, that neither of these approaches gives effective bounds on the number of
covers with a particular kernel, and both rely heavily on the existence of particular
enumerations of the base W. The following is the precise formulation of what we
shall prove (a similar statement, for arbitrary kernels can be found in [25]).

Theorem 7.2.11 Suppose W is a countable, transitive, G-finite, permutation struc-
ture such that all Grassmannians of W have nice orderings. Let 7r : C -+ W be
a finite cover of W with abelian kernel KO, and let K be a closed subgroup of Iio
which is normal in Aut(C). Then there are only finitely many Aut(C)-conjugacy
classes of closed, full subgroups H of Aut(C) with H fl Iio = K.

The subgroups H in the above statement are precisely automorphism groups of
finite covers of W which are expansions of 7r and have kernel K. So the theorem
implies that there are only finitely many isomorphism types of these. Corollary
6.4.4 shows that in order to prove the theorem, it is enough to prove that the
cohomology group H,(Aut(W),Ko/K) is finite. The dimension-shifting involves
embedding the quotient module Iio/Ii as a submodule of the kernel of some free
cover. To do this we need the following lemma.

Lemma 7.2.12 Assume that W is a countable, transitive permutation structure.
Suppose 7r : C ---+ W is a finite cover with abelian kernel Iio, and It. is closed
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subgroup of Ko which is normal in Aut(C). Suppose it has qdcc on covers of W.
Then there exists a finite subset X of C such that

K = K(X) n K. Aut(C/gX).
gEAut(C)

Proof. Write C as a union of an increasing chain of finite non-empty subsets
(Xi : i < w). Then K(X1) > K(X2) > ..., and we claim that ni<,, K(Xi) =
K. Indeed, for each i, K < K(Xi) < Ko and each K(Xi) is closed. Let g E
(li<w h (Xi). Write g = kihi where ki E K and hi E Aut(C/Xi). As g E Ko we
have that hi E Ko. Now, the hi converge to 1, and so the ki converge to g. Thus,
as K is closed, g E K, as required. Each K(Xi) is a closed normal subgroup of
Aut(C), and so the statement now follows from our assumption of qdcc.

Sketch of Proof of Theorem 7.2.11. Take X given by the above lemma, and let
Y = r(X). Let r = Aut(C), E = K. Aut(C/X) and G = Aut(W). Let C1 be the
cosets of E in IF, considered as a permutation structure with automorphisms those
permutations induced by T. This can be considered as a finite cover 7r1 : C1 -> W1,
where W1 is the permutation structure of cosets of Gy in G (with G acting).
Equivalently, W1 is the G-orbit containing a particular enumeration of Y. There
is a natural map Aut(C) , Aut(C1) with kernel K. The point is that the kernel
K1 of 7r1 is topologically isomorphic to K0/K, and what we want to compute is
H1 (G, K1).

Now take a reduct a2 : C2 - + YV1 of ir1 which is a free cover, as in 2.1.3. Denote
its kernel by K2 and note, of course, that K1 is a G-submodule of K2. Shapiro's
lemma (7.1.4) tells us how to compute Hcl(G, K2), and assuming G-finiteness of W,
this will be finite, by 7.1.5. So, by the long exact sequence (7.1.2), we are reduced
to computing H°(G,K2/K1). This is just fixed points of G on K2/K1. By our
assumptions and 7.2.9, W1 has a nice ordering. So by 7.2.10, ir2 has qdcc. So there
can only be finitely many fixed points of G on K21 K1.

8 Problems
This section contains a selection of problems which we came across during the
writing of these notes. Presumably some are more tractable than others; indeed,
some may be quite straightforward.

Our first problem is open-ended.

Problem 8.1 Take a particular l o-categorical structure W and classify its finite
covers.

Here, it might be interesting to take as W a Grassmannian of a structure D
for which there is good information about its finite covers (for example, one of the
structures in Theorem 4.3.5). But even for cases (iii) and (iv) in 4.3.5, the following
seems open.



68 D. Evans, D. Macpherson, A. Ivanov

Problem 8.2 Is the description of the possible kernels of a finite cover of the
rationals given in Lemma 3.1.7 true for all primitive W having trivial algebraic
closure and with irreducible Aut(W) and Aut(W/w) (for w E W)?

Problem 8.3 Suppose W is a countable, G-finite No-categorical structure and
iro : C -+ W is a finite cover. Let K be a closed subgroup of the kernel of 7ro.
Are there only finitely many isomorphism types of covering expansions of lro with
kernel K?

As outlined in Section 7, the above has an affirmative answer in the case of iro
having abelian kernel if either of the following is true in general.

Problem 8.4 Suppose W is a countable, G-finite No-categorical structure. Does
W have a nice enumeration? Does W have qdcc on finite covers?

Problem 8.5 Suppose W is a G-finite No-categorical structure and 7ro : Co --> W
is a finite cover with abelian kernel Ko. Let 7r be a covering expansion of fro with
kernel K. Is the cohomology group Hl (Aut(W ), Ko/K) necessarily finite?

Problem 8.6 In cases where Problem 8.5 is known to have an affirmative answer
(for example, Grassmannians of vector spaces over finite fields), give explicit bounds
on the size of the cohomology groups.

Also related to these is:

Problem 8.7 Is a finite cover of a countable, G-finite No-categorical structure
necessarily G-finite?

The following is taken from [23], where an example is given of a minimal non-
trivial free cover (Example 4.6 of [23]).

Problem 8.8 Investigate minimality of free covers. In particular, is the free cover
described in Example 4 of 1.2 minimal?

Many of the results we have described have been directed at showing that certain
finite covers must split. In fact, all of the non-split examples we have described
have involved a non-split cover with finite kernel or have come from a non-split
extension of a finite group (via the free cover construction, as in 2.1.5, or a simple
amalgamation as in 3.3.6). So we pose the following:

Problem 8.9 Does there exist a transitive, irreducible No-categorical structure W
which has an untwisted, minimal finite cover 7r : C -+ W with infinite elementary
abelian kernel?

There is an example due to Ivanov of a non-free, non-superlinked minimal finite
cover of the random two-graph (Example 2.3.1) where the fibre groups are cyclic
of order 4.

The following is of course suggested by the work [2] of Ahlbrandt and Ziegler
(and others) on quasi finite-axiomatisability of totally categorical structures.
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Problem 8.10 Investigate finite axiomatisability of a finite cover it : C --+ W
relative to an axiomatisation of W.

The following is suggested by work in [38] and Example 5 in 1.2.

Problem 8.11 Investigate finite covers which are homogeneous for a finite lan-
guage.

Affine covers are treated on an equal footing with finite covers in [4] and [34],
but have been rather neglected in the present survey. So we pose as our final
problem:

Problem 8.12 Develop further the theory of affine covers.
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Definable subgroups of algebraic groups over pseudo-finite fields
Notes by

Zoe Chatzidakis

The aim of these notes is to give an account of a result proved by E. Hrushovski
and A. Pillay, describing the definable subgroups of algebraic groups over pseudo-
finite fields [8]. This result has numerous applications to algebraic groups defined
over finite fields. In section 1, we recall the basic definitions and facts from algebraic
geometry. In section 2, we give a brief account of the results needed on pseudo-
finite fields, and in section 3 we give a proof of the main result. We conclude with
an application to the definability of maximal subgroups of certain algebraic groups
defined over the fields F.

These notes should be read in conjunction with those of Wilfrid Hodges [6].

Notations and conventions

We denote the algebraic closure of a field F by F, and its separable closure by F3.
The field F is perfect if it is of characteristic 0, or if it is of characteristic p > 0 and
closed under taking p-th roots. The Galois group cal(F,/F) acts on F, with fixed
subfield F11P°°, the perfect hull of F. We often identify Aut(F/F) with gal(F8/F).

As usual, Z denotes the ring of integers, FQ the field with q elements for a prime
power q . The language C is the usual language of rings: C = {+, -, , 01 1}.

1. Preliminaries in algebraic geometry: definitions and main facts
Let F be a subfield of K, where K is some large algebraically closed field. We

refer to [9], Chapter III for proofs. Throughout this section, we work in the theory
Tacf of algebraically closed fields.

(1.1) Let n be an integer. The set K" is called the affine space of dimension n
(over K); it is also sometimes denoted by An, or by An (K). The set V C K" is an
(affine) algebraic set (also called: Zariski closed set, or closed) if it is the zero-set
of a set of polynomials over K (in n indeterminates). If these polynomials have
their coefficients in F, we say that V is F-closed.

If V is an algebraic set, we denote by V(F) the set of F-rational points of V
(that is, having all their coordinates in F).

(1.2) The topology on K'" whose closed sets are the algebraic sets, is called the
Zariski topology. If S C K', there is a smallest algebraic set containing S: it is
called the Zariski closure of S and denoted by S.

Suppose that K* is an algebraically closed field containing K; then the topology
induced on K" by the Zariski topology on K*n coincides with the Zariski topology
on Kn.

(1.3) For S C K" we define

I(S) = {fE K[Xi,...,X ] I f(a)=0forall aE S}.
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Then S is precisely the set of zeros of I(S). Observe that because Ii [X1i ..., , X,]
is noetherian, every descending chain of closed sets is finite.

(1.4) We say that an algebraic set V is defined over F if I(V) is generated by
polynomials in F[X1i ..., X,]; we say that F is the field of definition of V if V is
defined over F, and F is smallest such. The field of definition of V is unique, and
is finitely generated (as a field).

In characteristic 0, an algebraic set V is F-closed if and only if it is defined over
F; in characteristic p > 0, this is however not the case: the equation (f (X ))p = 0
has same zero-set as f (X) = 0, and therefore V is Fr-closed whenever it is F-closed.
One has: V is F-closed if and only if V is defined over F1/p°°.

The notion of "defined over" for an algebraic set is therefore stronger than the
model-theoretic notion of "definable over".

(1.5) Let V be F-closed; V is F-irreducible if it is not the union of two proper
F-closed subsets; V is a variety (or irreducible) if V is not the union of two proper
closed subsets.

Clearly, if V is a variety then it is F-irreducible, but the converse is in general
false, unless F is separably closed. Using the descending chain condition on closed
sets, one shows that any F-closed set V can be written uniquely as V = VI U U V,,,.,
where the Vi's are varieties, and no V, is contained in the union of the others;
the V2's are called the (irreducible) components of V. If V is F-irreducible and
V = V1 U ... U V,,,, is the decomposition of V into irreducible components, the
varieties V, are defined over some normal algebraic extension F' of F, and are
conjugate under the action of cal(F'lF). Observe also:

V is F-irreducible if and only if I(V) fl F[X1, ..., X,,] is a prime ideal.
V is a variety if and only if I(V) is a prime ideal.
If V is a variety and F-closed, then I(V) is the radical of the ideal of K [X1, ... , X,]

generated by I (V) fl F[X1, ... , X, J.

(1.6) A field F' containing F is a regular extension of F if it is linearly disjoint
from F over F. Equivalent conditions are:

(i) The F-algebra F' ®F F is a domain.

(ii) F' is linearly disjoint from Flip over F (F' is a separable extension of F) and
F is relatively separably closed in F' (or F' fl F, = F). When F is perfect,
the first condition is always satisfied.

(1.7) For an algebraic set V, we define the affine coordinate ring of V to be
K[V] =def K[X1i...,Xn]/I(V). If V is a variety, then K[V] is an integral do-
main and its quotient field, K(V), is called the function field of V.

If V is F-closed, we define F[V] = F[X1i..., X,,]l(I(V) fl F[X1, ..., XI]). If V
is F-irreducible, F(V) is the quotient field of F[V]. Then

V is a variety if and only if F is relatively separably closed in F(V).
V is a variety defined over F if and only if F(V) is a regular extension of F.
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If V and W are varieties, then so is their cartesian product V x W, and K[V x
W] = K[VJ ®K K[W]. If V and W are F-closed and F-irreducible, then V x W
may be F-reducible. This happens if F[V] n F, and F[W] n F3 are not linearly
disjoint over F.

(1.8) For a variety V, we define dim(V) to be the transcendence degree of K(V)
over K (or equivalently of F(V) over F if V is defined over F). A point a E V is
called generic over F if the transcendence degree of F(a) over F equals dim(V).
Note that if a is generic, then F(a) ^_'F F(V). If K has infinite transcendence
degree, then it contains generic points of any variety (over its field of definition).

For an algebraic set V, we define dim(V) to be the supremum of the dimensions
of the irreducible components of V. For S C K", we define dim(S) = dim(s).

(1.9) Let a E K"; we define I(alF) to be the ideal consisting of all polynomials
f E F[X1, ... , X"] such that f (a) = 0; then I(a/F) is a prime ideal. If V C K" is
the associated algebraic set, it is then F-irreducible and F(a) F(V); we call V
the locus of a over F. Thus V is a variety if and only if F is relatively separably
closed inside F(a). Observe that by definition a is a generic point of V.

(1.10) Let a, V be as in (1.9). The model-theoretic interpretation, in the sense of
the theory TBCf, is:

The Morley rank and U-rank of tp(a/F) both equal dim(V). The type tp(a/F)
is stationary if and only if V is a variety. If V is not a variety, then the multiplicity
of tp(a/F) equals the number of irreducible components of V. In terms of field
extensions: tp(alF) is stationary if and only if F is relatively separably closed in
F(a); the multiplicity of tp(a/F) equals [F3 n F(a) : F].

We define the canonical base of tp(al F), denoted by Cb(al F), to be the perfect
hull of the field of definition of V; it is definably closed in the sense of TBCf, and
is contained in the perfect hull of F. It is the smallest definably closed subset
of F over which a has same rank and multiplicity as over F. Note that we do
not require tp(alF) to be stationary, for more details on canonical bases of non-
stationary types see [2]. By abuse of notation we will write b = Cb(a/F) whenever
b is a tuple such that dcl(b) = Cb(a/F).

Observe that, if tp(a/F) is not stationary, then Cb(a/F) is contained in the
definable closure of F(a) n Fs, and tp(alF(a) n Fs) I- tp(alF).

(1.11) Let V C K", W C K"° be varieties. A morphism from V to W is a map
f = (f1, ... , fm) defined on V and taking its values in W, where each f; E K[V].
It induces a dual map f* : K[W] -* K[V], g '-, g o f, which is an inclusion of
K-algebras if f(V) is dense in W. A morphism is continuous (for the Zariski
topology).

If f is bijective and f-' is also a morphism, then f is called an isomorphism.
There are bijective morphisms which are not isomorphisms, for instance in char-
acteristic p > 0, the morphism x H xP. If f is an isomorphism then f* is an
isomorphism, and conversely.

A rational map from V to W is a map f fm) defined on some open
subset of V and taking its values in W, and where each f; E K(V). It induces a
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dual map f* : K(W) -+ K(V), g F+ g o f, which is an inclusion of K-algebras if
f (V) is dense in W. A rational map is continuous.

We say that f is birational if there is a rational map g : W -> V such that f o g
is the identity. If f is birational then f* is an isomorphism, and conversely. Two
varieties are birationally equivalent if there is a birational map between them.

(1.12) A constructible set in K'n is a boolean combination of Zariski closed sets; it
can be written as a finite union of sets of the form v n u, where V is a variety,
and U a basic open set, i.e. of the form {a E K" I g(a) # 0} for some polynomial
g over K.

By quantifier-elimination of the theory TBCf, every definable subset of K" is
constructible.

(1.13) Abstract varieties. So far we have talked only of affine algebraic sets and
varieties. There is a more general notion of variety, whose definition encompasses
both affine varieties and projective varieties. Below, we will list the definitions
pertaining to abstract varieties and some of their properties.

(1) An abstract variety (V, Ui, Vi, tpi)iEi, I a finite set of indices, is given by a
set V = UiEI U affine varieties Vi, i E I, and bijections (pi : Ui -+ Vi such that
for i # j, fij = cpj p= 1 : Vi -> Vj is a rational map, defined on the open subset
cpi(Ui n Uj) of Vi.

(2) The topology on V is then defined in the following manner: a subset W of
V is open if and only if cpi(W n Ui) is open (for the Zariski topology) in Vi for all
i E I. Our assumption on the sets <pi(Ui n Uj) implies that each Ui is open in V.
This topology is called the Zariski topology.

(3) If all the varieties Vi and rational maps fij are defined over the field F, we
say that V is defined over F. Note that the abstract variety is actually uniquely
determined by the data (Vi, fii)i,jEi.

(4) Observe that all varieties Vi have the same dimension, since each map fij is
birational (with inverse fji) and therefore F(Vi) ^ F(Vj).

A point a E V is a generic point of V if cili(a) is a generic point of Vi for all
i E I (or, equivalently, for some i E I, since one has: if b = cili(a) is generic, then
so is fij(b)).

For a E V, one can define F(a) to be the field F(cpi(a)) for some i E I such
that a E Ui. Note that this definition is independent of the choice of i (up to an
F-automorphism).

(5) A subvariety of V is an irreducible closed subset W of V. Equivalently, W
is a subvariety of V if pi(W n Ui) is a subvariety of V for each i. A point b E W
is a generic of W if pi(b) is a generic of cpi(W n Ui) for each i.

(6) Let S C V be a set. We denote by S the closure of S for the topology on
V. Then S = UiEI cpi 1(T. (S n Ui)).

(7) Let (V,Ui,V,<pi)iEI and (W, S3, W3,1/Jj)jEJ be two abstract varieties. A
rational map 0 : V -+ W is a map with domain an open subset of V, and such that
for i E I and j E J the maps Bij = 0j0 1 : Vi -+ Wj are rational maps. Note that
0 is continuous for the topology.

(8) If (V, Ui, Vi, cpi)iEi and (W, Si, Wj, 7/Jj)jEJ are abstract varieties, then their
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product is also an abstract variety, given by (V x W, U; x Si, V; x Wj, cp, x 0j),EI,iEJ

(1.14) Example. Consider the projective space of dimension n, F'. It is the set of
lines in affine (n + 1)-space, and can be described as follows: let S = K"+1 \ {0},
and define an equivalence relation on S by: (x0, ... , x,,) - (yo, ... , y,,,) if Axo =
YO, ... , Axn = y,,, for some A E K. Then Pn = S/ -. The representative of the
equivalence class of (xo, ..., xn) is often denoted by (xo : : xn).

One defines (projective) algebraic sets as in the affine case, except that one has
to be careful to only consider zero-sets of sets of homogeneous polynomials. We
will now show that Pn has a natural structure of abstract variety, and that the
closed sets are precisely finite unions of algebraic sets. For i = 0, ... , m, consider
the hyperplane Hi of Pn defined by the equation xi = 0, and let U, = Fn \ H,.
There is a natural bijection cp, : U, -> K' = V, given by

xo xixi 1 xix1+l xn
xi xi xi xi

Then the maps cpjyos l : Vi - Vi are rational maps. Hence (Pn, Ui, V,, 000<i<n. is
an abstract variety. One also verifies that algebraic sets are closed, and conversely
that an irreducible closed set is an algebraic set (look at the polynomials vanishing
at a generic point of the closed set).

(1.15) Recall that a connected algebraic group is a group G, with a structure of
abstract variety on G, and such that multiplication: G x G -+ G and inverse:
G - G are rational maps which are everywhere defined (on G x G and G). If the
underlying variety is affine, we say that G is an affine algebraic group.

One can extend this definition to non-connected algebraic groups by defining
an "abstract algebraic set": it is a union of sets Ui, each of them in bijection with
some algebraic affine set Vi via a map (pi, with the maps cpjcp4 1 defined on an open
subset of V,, and given locally by rational maps.

Then, an algebraic group G is an abstract algebraic set, such that multiplication
and inverse are everywhere defined and given locally by rational functions. In
particular, closed subgroups of algebraic groups are algebraic groups. See [10] for a
precise definition, and [6] for a detailed definition in the affine case and for related
results. We conclude this section with two easy results on algebraic groups.

(1.16) Let G be an algebraic group defined over F, let S be a subset of G such
that:

(i) S contains all the generics of 5 over F.

(ii) If a, b E S are generic and independent over F then ab E S and a-1 E S.

Then S is a subgroup of G.
Proof. By assumption and since the map a H a-1 is continuous, S-1 is a dense
subset of the closed set (S)-1 which contains all the generics of S. This implies
that (3)-1 = 3-1 2 S, from which one deduces that S = S.

Let a E S be generic; then the set S(a) = {b E S 1 ab E S} is closed and
contains all the generic elements of 9 which are independent from a over F; thus
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S(a) = S, and aS = S; similarly, the set {a E S 1 aS = S} is closed, contains
all the generic elements of S and therefore equals S; thus SS = S = S-1, which
proves the result.

(1.17) Let G be an algebraic group defined over F, let a E G and b be a generic of
G, independent from a over F. Then ab is also a generic of G, and is independent
from a over F.
Proof. This is a simple argument using transcendence degrees. Let n = dim(G).
Then F(a, b) = F(a, ab) has transcendence degree n over F(a). Hence

n = tr.deg(F(a, ab)/F(a)) < tr.deg(F(ab)/F) < n,

which shows that ab is a generic of G, independent from a over F.

2. Preliminaries on finite and pseudo-finite fields
Definitions. (1) A field F is pseudo-algebraically closed (abbreviated by PAC) if
every affine variety defined over F has an F-rational point.

(2) A field F is pseudo-finite if it is PAC, perfect, and has precisely one algebraic
extension of degree n for every n E N.

Let m, n, d be positive integers; there exists an integer e such that, for any field F,
if fl,..., fm., f are polynomials in n variables over F of total degree < d then:

(1) if f E I = (fl,. _., fm), then f = E 1 gY f, for polynomials gi of total degree
< e.

(2) if I is not prime, then there are some polynomials g and h of total degree
< e such that gh E I but g,h I.

The proof can be found e.g. in [4]; from this it follows that "Ii,.. ., fm gen-
erate a prime ideal in F[X1i ..., Xn]" is a first-order property of the coefficients
of fl, ... , fn. Moreover, since Tacf eliminates quantifiers, there is a quantifier-free
formula which defines in all fields F (the coefficients of) the polynomials fl,..., fn
in n variables and of total degree < d whose zero-set is a variety (i.e., such that
fl,..., f71, generate a prime ideal in F[X1,... , Xn]). Thus one can talk about
varieties in a first-order way.

Observe also that the statement "F has one extension of degree n" can be
formulated by translating in a first-order way: there are c1, ..., cn such that f (X) =
X n + c1X n-1 +. + cn is irreducible, and for all d1, ... , d, such that g(X) =
X n + d1Xn-1 + + do is irreducible, the field obtained by adjoining to F a root
of f (X) contains a root of g(X).

From these we deduce that being pseudo-finite is a first-order property in the
language C, and we denote by Psf the theory of all pseudo-finite fields. It is
immediate that every finite field is perfect and has one extension of degree n for
each n E N (the unique extension of iFq of degree n is Fn); it also follows from the
Lang-Weil theorem that every non-principal ultraproduct of finite fields is PAC.
J. Ax [1] showed that pseudo-finite fields are precisely the infinite models of the
theory Tj of all finite fields. The fact that every infinite model of the theory of
finite fields is a model of Psf follows easily from the Lang-Weil estimates on the
number of points in finite fields of varieties; the reverse direction is given by (2.5).
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We list below the main properties of the theory Psf; the proofs can be found in
[1], [3] and [7]. Let F, F1 and F2 be pseudo-finite fields.

(2.1) Let E be a subfield of F1 and F2. Then

F 1 -E F 2 (F1 n t) --E (F2 n t).

(2.2) Taking for E the prime field, one obtains invariants for the elementary theories
of pseudo-finite fields:

F1 - F2 Abs(Fl) ti Abs(F2),

where Abs(Fi) is the subfield of F1 of elements algebraic over the prime field.

(2.3) Assume that F1 C F2; then, taking E = Fl:

F1 -< F2 F1 n F2 = F1.

(2.4) Another application of (2.1) is the following: let E be a subfield of F, and
a, b E F; then tp(a/E) = tp(b/E) if and only if there is an E-isomorphism f
between (E(a) n F) and (E(b) n F) which sends a to b.

From this one then deduces: let yo(x) be a formula (x a tuple of variables); there
is a formula zP(x), boolean combination of sentences of the form (3t f (x, t) = 0),
where f (x, t) E Z[x, t], t a single variable, such that

Psf (p(x) < * V)(x).

(2.5) Let E be a perfect field, and assume that E has at most one algebraic extension
of each degree. Then there is a field F isomorphic to an ultraproduct of finite fields,
such that

FnE=E.
Moreover if E is of characteristic 0, F can be chosen isomorphic to an ultraproduct
of prime fields ]F..

This shows that Psf is precisely the theory of all infinite models of T f, and
that the pseudo-finite fields of characteristic 0 are exactly the infinite models of
Th(]Fp I p a prime ).

(2.6) As an illustration of techniques of proofs, we will show that the algebraic-
geometric and model-theoretic notions of algebraic closure coincide:
Let E be a subfield of the pseudo-finite field F, relatively algebraically closed inside
F, and let a E F, a E; then tp(a/E) is not algebraic.
Proof. Choose a field F' isomorphic to F over E, and linearly disjoint from F over
E; because F and F are linearly disjoint over E, the ring Pop F' is an integral
domain; choose (topological) generators a of Aut(F/F) and a' of Aut(F'/F) such
that a and a' have the same restriction to t; define r on the quotient field M of
Fop F' by setting r(b 0 c) = a(b) 0 a'(c) for b E F, c E F, and extending in
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the obvious manner. Lift r to an automorphism r1 of M, and let M1 C M be the
subfield of k fixed by r1i then Aut(Ml/Ml) is by definition generated by r1, and
F and F' are relatively algebraically closed in M1, since rl extends a and a'. By
(2.5), there is a pseudo-finite field L containing M1 and such that M1 is relatively
algebraically closed in L. By (2.3), L is an elementary extension of both F and
F', and therefore contains a realisation of tp(a/E) not in F. Hence tp(a/E) is not
algebraic.

(2.7) We now give a sharper description of definable sets.

Let 'p(x, y) be a formula, x = (xl, ... , xm), y = (yl, ..., yn), let a E F'n and let
S = cp(a, Fn) = {b E F" I F = cp(a, b)}; there is a positive integer e, an algebraic
set V defined over F, and a projection map (on the first n coordinates) a from
V(F) onto S, with fibers n-1(y) of size < e for y E S.

(2.8) Using the Lang-Weil estimates on the number of rational points of varieties in
finite fields, (2.7), and some counting arguments, one then obtains similar estimates
for definable subsets of finite fields:

Let cp(x, y) be a formula in L, with x = (x1,. .. , x,,, ), y = (yl,... , y.). There is a
positive constant C, and a finite set D of pairs (d, µ) with d E {0, 1, ... , n} and µ
a positive rational number, or (d, p) _ (0, 0), such that for each finite field ]Fq and
tupleaElgn,

(*) Icard(wp(a, may`)) - µgdI < Cqd-(1/z)

for some (d, µ) E D.
Furthermore, for each (d, p) E D there is a formula cp(d µ)(x), which defines in

each finite field ]Fq the set of tuples a such that (*) holds.

Let a be an m-tuple from the pseudo-finite field F. Then there is a unique pair
(d, p) E D such that F cp(d µ)(a); one verifies that d = dim(V(a, Fn)). The
number p can be used to define a measure ms on the definable subsets of S =
V(a, Fn): for T a definable subset of S with associated pair (e, v), define:

_ 0 ife<d,
ms(T) v/µ if e = d.

Since the definition of ms originates from counting points in finite sets, ms is
clearly a finitely additive probability measure, defined on the definable subsets of
S, taking only rational values, and invariant under definable bijection.

From these considerations, one obtains easily the following results:

(2.9) (Finiteness of the Sl-rank) Let S C Fn be definable, with dim(S) = d; let
V (x, y) be a formula, and (ai)iEI a sequence such that dim(S n V(ai, Fn)) = d for
all i, and dim(S fl cp(ai, Fn) fl o(ai, Fn)) < d for all i # j; then I is finite.
Proof. By (2.8) there is a positive rational number r < 1 such that for any a E F'",
ms(cp(a, Fn)) > 0 implies ms(cp(a, Fn)) > r; from the additivity of ms, we obtain
that I has less than (1/r) elements.
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(2.10) We will denote the second coordinate of the pair associated to a definable
set S by µ(S); then one has:

(a) For a variety V defined over F, u(V(F)) = 1 (This is the Lang-Weil Theo-
rem).

(b) For disjoint definable subsets S and T of F",

µ.(S) + µ(T) if dim(S) = dim(T),
µ(S UT) µ(S) if dim(S) > dim(T),

t p(T) if dim(S) < dim(T).

(c) If f : S -> T is definable, and dim(f-1(a)) = d for each a E T, then
dim(S) = dim(T) + d. If moreover u(f-1(a)) = m for every a E T, then
µ(S) = mp(T).

(2.11) (not the strict order-property) Let cp(x, y) be a formula; then every sequence
of tuples ai E F such that the sets cp(ai, F") form a strictly increasing chain, is of
bounded length.

We should mention that pseudo-finite fields are unstable: indeed Duret showed
they have the independence property [5].

(2.12) Adjoin to the language new constant symbols ci,n for 0 < i < n E N to
obtain the language Cc, and consider the extension Psf, obtained by adding to Psf
axioms expressing that the polynomials X"+Cn_1,nXn-1+ +co,n are irreducible
for each n. Every pseudo-finite field then expands (non-uniquely) to a model of
Psf,; also, Psf, is model-complete, since whenever (Fl, c) C (F2, c) are models of
Psf, then F1 is relatively algebraically closed in F2.

F admits elimination of imaginaries in the language Cc. Thus every group G
interpretable in F is F-definably isomorphic to a group defined in F.

(2.13) Let G be a group definable in F; then there is a connected algebraic group
H defined over F, definable subgroups of finite index Go of G and Ho of H(F),
and a surjective isomorphism f : Go -> Ho, defined over F and with finite central
kernel.

(2.14) If V is a variety defined over F, then the set V(F) is Zariski dense in V,
that is, its Zariski closure equals V (actually, this holds in arbitrary PAC-fields).

Indeed, for 0 g(x) E F[V], the algebraic set V' = {(a, b) I a E V, bg(a) = 1)
is clearly a variety, so it has an F-rational point. This shows that V(F) intersects
every open set of K" defined over F. If W is a proper closed subset of V defined
over F, then the union of the conjugates of W over F is defined over F, which
shows that V(F) is dense in V(F). By (1.2) and because V(F) is dense in V, we
deduce that V(F) is dense in V.
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3. Definable subgroups of algebraic groups over finite and pseudo-finite
fields

Let F be a pseudo-finite field, contained in the algebraically closed field K. We
denote by q f dcl the definable closure in the sense of K; thus q f dcl (A) is the perfect
hull of the field generated by A.

When speaking of types, we mean types in the sense of Tacf, that is, quantifier-
free types. We denote them by q f tp to avoid confusion. Independence is also meant
in the sense of Tacf, that is, two tuples are independent over a set A if they are
algebraically independent over A.

Theorem. Let G be a connected algebraic group defined over F. Let G1 be
a proper subgroup of finite index of G(F) which is definable in F. Then there
exists a connected algebraic group H defined over F and a surjective F-rational
homomorphism g : H --+ G with non-trivial finite central kernel, such that g(H(F))
is a subgroup of finite index of G1.

Proof. We may assume that F is uncountable and saturated, and that F0 is a
countable elementary substructure of F containing the parameters necessary to
define G and G1. Observe that F contains generic points of G1, and that a generic
point of G1 is a generic point of G (since dim(G) = dim(Gl) =def n).

Step 1.

By (2.7), there is a variety V of dimension n defined over F0, a finite-to-one
projection a defined on V, such that 7r(V(F)) C G.

Choose b and c in ir(V(F)), independent and generic (over Fo), and let b,e E
V(F) be such that r(b) = b and a(e) = c. Let a = cb-1; then a is a generic of G1,
but is not necessarily in ir(V(F)).

Let F1 = Fo(a) fl F; it is relatively algebraically closed in F; hence q f tp(b, c/F1)
is stationary, because b and c are in F; let a* E F1 be such that Fo(a*) = Fo(b, c) fl
F1; by (1.10), Cb(b,e/F1) equals (the perfect hull of) Fo(a*), and gftp(b,e/Fo(a*))
is stationary. Moreover, a E Fo(a*).

Let b* and c* be defined by:

Fo(b*) = Fo(b)fl Fo(a*,e)

Fo(c*) = Fo(e) n Fo(a*,b*)

Then b E Fo(b*) and c E Fo(c*); furthermore Fo(b*) = Cb(a*, c/Fo(b)) and Fo(c*) _
Cb(a*,b*lFo(e)); from the first equality and the fact that a* E Fo(b,e), it follows
that a* E Fo(b*,e); similarly, a* E Fo(b*, e) and b* E Fo(a*, c) imply that a* E
Fo(b*, c*) and b* E Fo(a*, c*).

Let A = (a*, a), B = (b*, b) and C = (c*, c). Summarising the situation, we
have:

(i) A, B, C are in F, pairwise independent over F0, and each of them is quantifier-
free definable over F0 and the other two.

(ii) a E Fo(A), b E Fo(B), c E Fo(C).
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(iii) A E Fo(a), B E Fo(b), C E Fo(c).

Step 2. Defining a new group.
We take A' = (a'", a') E F realising q f tp(A/Fo) and independent from A, B, C

over FO. We then take B' = (b'`, b') E qfdcl(Fo(A', C)) such that q f tp(A', B'/Fo(C))
= q f tp(A, B/Fo(C)), and let F2 be an elementary substructure of F containing
Fo(A') and independent from A, B, C over FO. Then

(1) B E qfdcl(F2(A, B')), B' E qfdcl(F2(A, B)) and A E gfdcl(F2(B,B')).

This is because of property (i) above. Note also that A, B and B' are pairwise
independent over F2, and that ab = a'b' = c.

We are now ready to apply the machinery of germs of functions. Working in the
algebraically closed field K, let P be the set of realisations of qftp(A/F2) and Q
the set of realisations of gftp(B/F2). Their Zariski closures P and Q are varieties,
because the types of A and B over F2 are stationary.

Let f, g be two partial definable functions Q Q; we say that f and g have
the same germ if they are defined and equal on a Zariski open subset of Q. By the
uniqueness of the non-forking extension of qftp(B/F2) (because B E F), this hap-
pens if and only if: for some B1 E Q (or equivalently, for all B1 E Q), independent
over F2 from the parameters used to define f and g, the tuples f(B1) and g(B1)
are defined and equal.

Note that we could as well speak of germs of functions Q -> Q, since germs are
defined in terms of open subsets of Q.

To each Al E P we associate a partial function fA, : Q Q as follows: if
B1 E Q is generic (over F2(A1)), let fA,(Bl) be the unique element B2 such that

gftp(Ai, B1, B2/F2) = qftp(A, B, B'/F2)

By (1), the function fA, is generically invertible. Moreover, given B1, B2 E Q
independent over F2, there is a unique Al E P such that fA,(B1) = B2, and this
tuple Al is independent from B1 and from B2 over F2.

Let A1, A2 E P be independent over F2; using (1) one checks that for any B1 E Q
independent from Al, A2 over F2, the tuple B2 = fA, o fA, (B1) is well-defined and
in Q. Applying (1) again and using the fact that tr.deg(A/F2) = tr.deg(B/F2) =
n, one sees that each of A1, A2, B1, B2 is quantifier-freely definable over F2 and
the other three, and therefore that any three tuples from {A1, A2, B1, B2} are
independent over F2.

In particular, B1 and B2 are independent over F2, which implies that there is a
unique A3 E P such that fA, (Bl) = B2. Write B1 = (b;, bl) and Ai = (a2 , ai) for
i = 1, 2, 3. From the definition of fA and the fact that b' = a'-lab we obtain

a- I ab= a -la a -la b31- 2 11,

which shows that a3 E F2(al, a2). Since A3 E F2(a3), we deduce that A3 is al-
gebraic over F2(Al, A2), and therefore that (Al, A2, A3) is independent from B1
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over F2. Hence fA3 = fA3 o fA and also A3 E gfdcl(F2(A1fA2)) (because
A3 E gfdcl(A1,A2,B1) and gftp(Bj/F2) is stationary).

Hence we have an F2-definable partial map m : P x P - P which associates
to the pair (A2, Al) the unique A3 E P such that fA2 o fAl = fA3. In the same
manner, there is an F2-definable map i : P -> P which associates to Al the unique
element A2 such that fA2 o fAl is the germ of the identity function. We have, for
Al, A2 E P independent over F2:

(2) fm(A2,Ai) = IA2 o AA, and fi(Al) o fAl = fA, 0 fi(A,) = id.

Observe that each of A1, A2, m(Al, A2) is definable over F2 and the other two.
From the definition of m and the associativity of composition of germs also follows
that for A1, A2, A3 E P independent over F2 one has:

(3) m(A3, m(A2, A1)) = m(m(A3, A2), A1).

We have a generically defined operation m : P x P --* P, which is generically asso-
ciative. From this data, a standard argument (detailed below) shows the existence
of a definable group.

Let O(x, y, z) be a formula in q f tp(A, B, B'/F2) expressing the various relations
given by (1), together with A E P, and B,B' E Q. Since gftp(B/F2) is definable
over F2, there is a formula 9(x) E qftp(A/F2), such that whenever K 9(A1) and
B1 E Q is independent from Al over F2, then:
There is a unique B2 satisfying'(A1, B1, z). Furthermore, B1 is the unique tuple
satisfying O(A1, y, B2) and Al is the unique tuple satisfying '0(x, B1, B2).

This is first-order expressible, and precisely says that the formula &(A1, y, z) defines
(the graph) of the germ of an invertible function Q - Q, and that Al is uniquely
defined by this germ. We will denote this function by fA,. Reasoning in the same
manner with equation (2), there is a formula cp(x) E qftp(A/F2) implying 9(x),
and such that whenever Al satisfies cp(x) and A2 E P is independent from Al over
F2 then:

The tuples m(Al, A2), m(A2i Al) and i(Al) are defined, satisfy 9(x) and the iden-
tities given by (2). Each of A1, A2, m(Al, A2) is definable over F2 and the other
two, and similarly for the triple A1, A2, m(A2, Al).
Observe that this last condition implies in particular that m(Al, A2) and m(A2, A1)
are in P and independent from Al over F2, since tr.deg(F2(A1 i m(Al, A2))/F2(Al))
= tr.deg(F2(Al, m(A2, Al))/F2(Al)) = n.

Because the set of elements satisfying W(x) contains P, it contains an open
subset Uo of P, and we may assume that i(Uo) = Uo (if necessary, replace Uo by
i(Uo) n Uo). For Al E Uo, and A2 E P independent from Al over F2 we then have:

(a) the formula /'(A1, y, z) defines (the graph of) the germ of a generically
invertible function fA, from Q to Q.

(b) m(Al, A2), m(A2, A1), i(Al) are defined, are in Uo, and satisfy equation (2).
(c) m(Al, A2), m(A2, A1) E P, and each of them is equi-definable with A2 over

F2(A1) (in particular, they are independent from Al over F2).
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Define

G' = {fA1 o fA2 I Al, A2 E Uo}.

Claim 1. If Al E P, then fA, E G'.
Proof. Let A2 E P be independent from Al over F2, and let A3 = m(i(A2), A1).
Then A3 E P, and by (2), fA1 = fA2 o fAa
Claim 2. If A3 E P is independent from (A1, A2) over F2, then m(m(A3, A2), A1)
is defined and in P.
Proof. By (c), A4 = m(A3i A2) is in P and independent from Al over F2. By (b),
fA, = fA3 o fA2. Applying (b) and (c) again, we have:

fA3 0 fA2 0 fA, = fm(A4,A1) and m(A4i A1) E P.

Claim 3. (G', o) is a group.
Proof. By (b), G' is closed under inverses. It suffices to show that if A1, A2,
A3 E Uo, then fA, o fA2 o fA3 E G. Choose A4 E P, independent from (A1i A2, A3)
over F2. By (c) and claim 2, the tuples m(Ai, i(A4)) and m(m(A4, A2), A3) are in
P, and by (b),

fAl 0 fA2 0 fA3 = (IA1 0 fA4) 0 W. 0 fA2 0 Al)
= fm(A1,i(A4)) o fm(m(A4,A2),A3)'

Claim 4. Every element of G' is the product of two elements of P (By abuse of
notation we identify P with its image in G' via (A1 H f A, )).
Proof. Let A1, A2 E Uo, and choose A3 E P independent from (A1, A2) over F2.
Then m(Ai, i(A3)) E P, m(A3i A2) E P and

fAl 0 fA2 = fm(A1,i(A3)) o fm(A3,A2)'

Using once more the definability of q f tp(B/F2), one shows that the sets

{(A1, A2, A3, A4) E UO I fA1 o fA2 = fAa 0 fA4 }

and

{(A1, A2, A3, A4, A5, A6) E Uo6 I fA1 o fA2 o fA3 o fA4 = fAa o fA6 }

are definable. Hence the group (G', o) is interpretable in K (with parameters from
F2). Since P = Uo is a variety and contains all the generics of G' (by claim 4, G'
is generated by the elements of P), the group G' is connected.

Step 3. Finding the group H.
We now quote a result by Hrushovski, which allows us to find an algebraic

group:

Theorem. Let G be a connected group interpretable in an algebraically closed
field K. Then there is a connected algebraic group H and a definable isomorphism
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f : G - H. Furthermore, if G is definable over the subfield k of K, then so are H
and f.
For a proof, see [10] or [11].

Applying this to our situation, and noting that there is a definable injection P
G', we obtain a connected algebraic group H of dimension n, defined over F2i and
a definable injection f : P - H, such that for A,, A2 E P independent over F2i
f(m(A2, A,)) = f(A2) . f(A,) and f(i(A,)) = f(A,)-i.

If Al E P, then Al E F2(f (A1)1/9) for some p-th power q; replacing H by the
definably isomorphic algebraic group x!") (x, ... , x,) E H}, we may
assume that

(4) if Al E P, then Al E F2(f (A,)).

Step 4. Definition of the morphism g.
By definition, f A acts on the second coordinate of B = (b*, b) like multiplication

by a'-1a (inside G). We now look at the set

S={(f(A,),a'-'a,)I A, E P} C H x G,

where Al = (at, a,). Then S is irreducible, because q f tp(f (A), a/F2) is stationary.
Since it projects onto f(P) = f(P)-1, it contains all the generics of S and their
inverses, and is closed under generic multiplication. By (1.16), S is a subgroup
of H x G. Since every element of G' is the product of two elements of P, every
element of H is the product of two elements of f(P), and therefore S projects onto
H. From al E F2(f(Al)), we deduce that S is the graph of a group morphism
g : H - G. Because A, and therefore also f (A), is algebraic over F2(a), the
morphism g is finite-to-one. Since A is a generic of G', and g is everywhere defined,
g is a morphism of algebraic groups. Also, because a is a generic point of G and
G is connected, the morphism g is onto. Since g is finite-to-one, Ker(g) is a finite
normal subgroup of H, and therefore central because H is connected.

Step 5. g(H(F)) is a subgroup of finite index of G,.
Since dim(H) = dim(G), (2.9) implies that [G(F) : g(H(F))] is finite. It

therefore suffices to show that g(H(F)) C G1. As every element of H(F) is the
product of two generic elements, it is enough to show that the image by g of a
generic element of H(F) is in G1.

Let e E H(F) be generic. By (4), e = f(A,) where A, = (a*, a,) E F2(e) C F
realises gftp(A/F2). Since gftp(B,C/F2(A)) is stationary, there are tuples B1 =
(bi,bl) and C, = (ci,cl) in F such that

gftp(Al, B1, C1/F2) = gftp(A, B, C/F2).

Then bl and ci are in V(F), which implies that b, and c1 are in G1. Hence
a1 = clbj 1 E G1, and g(e) = a'-1a, E G1.

Step 6. Ker(g) is non-trivial.
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Assume by way of contradiction that g is injective. Then g-1(a) E of dcl(F2(a))
for each a E G. Since F is perfect, this implies that g(H(F)) = G(F), which
contradicts the fact that G1 is a proper subgroup of G(F) containing g(H(F)).

We can obtain more information on Ker(g) as follows: since G and H are
connected, applying (2.10)(a) and (c) we obtain

I Ker(g) fl H(F))I p(g(H(F))) = p(H(F)) = 1 =

= ,u(G(F)) = [G(F) : g(H(F))] p(g(H(F))),

from which we conclude

I Ker(g) n (G(F))I = [G(F) : g(H(F))] > 1.

Remark. We say that a field is bounded if it has finitely many extensions of degree
n for each n E N. Pseudo-finite fields are bounded. The results stated in sections 2
and 3 are valid in perfect bounded PAC fields, with the exception of those involving
the "counting measure" p. For details, see [7] and [8].

4. Definability of maximal subgroups
Let G be an almost simple algebraic subgroup of GL defined over Z. Reducing

the equations defining G modulo p gives for almost all prime p, an almost simple
algebraic subgroup Gp of GL",. In this section, we will show that the maximal
subgroups of Gp(Fp) are uniformly definable. For details on reduction modulo p,
we refer to section 7 of [6].

Theorem. Let G C GL,, be an almost simple algebraic group defined over Z.
Then there are formulas y91(x, y),..., yp,(x, y) of C such that whenever p is a prime
and M is a maximal subgroup of Gp(]Fp), then M is definable in Fp by the formula
cpi(x, b) for some i < s and tuple bin ]Fp.

Proof. Let cpj(x, yj), j E N, be an enumeration of the L-formulas. If the statement
fails, we can find an infinite set {p(i) I i E N} of primes, and for each i a maximal
subgroup Mi of Gp(i)(]Fp(i)) such that Mi is not definable by any of the formulas
Vj (x, bj) for j = 1, ..., i and bj a tuple from Fp(i).

Consider a non-principal ultraproduct (F, +, , M) of the structures (Fp(i), +, , Mi);
then F is a pseudo-finite field of characteristic 0, and M is a subgroup of G(F),
which is contained in no definable proper subgroup of G(F). We will now show
that M is definable, which will give a contradiction, and prove our result.

Case 1. M contains a non-trivial unipotent element u.
See section 1 of [6] for definitions and related results. The group U = {exp(t log(u)) I
t E F} is a definable, Zariski-irreducible (in F) subgroup of G(F). For almost all
i, the i-th coordinate ui of u is a unipotent element of Mi C Gp(i)(Fp(i)). For these
i's, {exp(tlog(ui)) I t E F?(i)} is the subgroup of Gp(i)(Fp(i)) generated by ui and
is therefore contained in Mi. This implies that U is contained in M.
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By the irreducibility theorem (Theorem 24 in [6]) the subgroup H of G(F)
generated by the subgroups U9, g E M, is definable and is normal in M; then the
normaliser H1 of H in G(F) is definable and contains M.

If H1 = M then M is definable. If H1 = G(F), then H is normal in G(F)
which, since it is infinite and G is almost simple, implies that H has finite index in
G(F). As H C M C G(F), M is also definable.

Case 2. M contains no non-trivial unipotent element.
Then Mi contains no non-trivial unipotent element for almost all i E N. Hence
each Mi contains an abelian subgroup of index at most d for some d (Facts 38 and
39 of [6]), which implies that M has a normal abelian subgroup A of finite index.
Let B = Z(CG(F)(A)) be the center of the centralizer in G(F) of A. Since algebraic
groups satisfy the descending chain condition on centralizers, CG(A) = CG(Ao) for
some finite subset Ao of A. Hence CG(F)(A) = CG(Ao)flG(F) and B are definable
in G(F).

Also, NG(F)(A), the normalizer of A in G(F), contains M and is contained in
H = NG(F)(B): for g E G(F), g-1Bg = Z(CG(F)(g-1Ag))

If H = G(F), then B is an infinite normal abelian subgroup of G(F). Because
G is almost simple, this implies that B = G, and therefore that G is abelian, a
contradiction. Hence H = M is definable.
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Groups in pseudofinite fields

Wilfrid Hodges

These notes should be read with those of Zoe Chatzidakis [2]. We report some
results from Hrushovski and Pillay [7]. The main items in this paper are

an analogue for pseudofinite fields of Zil'ber's Irreducibility Theorem (Theo-
rem 23);

lemmas relating simplicity properties of an algebraic group G to its restriction
G(F) to a pseudofinite field F (§6);

a fast though non-effective model-theoretic proof of a result of Matthews,
Vaserstein and Weispfeiler on reduction at primes (Theorem 33; see also the
similar argument in the last section of [2]).

The main difference from [7] is that I avoid the local stability arguments of
Hrushovski and Pillay [6]. In fact the proof of the Irreducibility Theorem removes
all the stability arguments beyond the '(Si) property', without adding anything
in their place. (Later I quote the Theorem of [2] §3, whose proof-at least in its
present guise-uses forking, canonical bases and the definability of types.) It took
several shoves to remove the parts of the argument that rely on stability; Frank
Wagner and John Wilson delivered the final push during the Blaubeuren meeting.
I think a fair comment would be that stability theory has powerful methods for
showing that things are first-order definable, and this was the role that it played in
the original argument. But sometimes, after the event, one sees that other devices
may do the job faster. Abraham Robinson was exploring first-order definability in
algebraic geometry at the time of his death, before stability methods were widely
available (see for example [9]); one can see this work of Hrushovski and Pillay as
in some sense a natural continuation of Robinson's.

I thank Zoe Chatzidakis, David Evans and Martin Ziegler for several improve-
ments, and in particular for rescuing me from some errors which would have been
a lot more embarrassing in print than they were in front of a friendly audience.

1. An example: one-dimensional matrix groups

2. Algebraic groups

3. Irreducible sets and connected groups

4. Dimension in pseudofinite fields

90
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5. Algebraic groups in pseudofinite fields

6. Almost simple groups

7. Reduction at a prime

8. A theorem on reduction

Throughout, L is the first-order language of rings, L(X) is L with constants added
for the elements of a set X, K is an algebraically closed field and F is a pseudofinite
field which is a subfield of K.

Except where we say otherwise, `definable' means definable by a first-order
formula with parameters. If X is a subset of K'n which is definable by a first-order
formula with parameters in a set Y, we say that X is definable over Y. Note that
by elimination of quantifiers for algebraically closed fields, the defining formula
0(x) can always be chosen to be quantifier-free. When M is a subfield (or even a
subring) of K, we write X (M) for the set definable in M by the same quantifier-free
formula 0; clearly X(M) = X n Mm. Following [2] (1,4), I have tried to restrict
the phrase `defined over F' to varieties whose ideal of definition is generated by
polynomials over F, so that the terminology of algebraic geometers applies.

1 An example: one-dimensional matrix groups
Let n be a positive integer. Then we can write End,, (K) for the set of n x n matrices
over the algebraically closed field K. This set is in effect the whole of Kn2, so it is
a K-closed set, i.e. a closed set in the K-Zariski topology.

Addition of matrices is given by a family of n2 polynomials s;j with integer
coefficients, so that if M and N are matrices in End,, (K) then sij (M, N) is the ij-
th component of the matrix M + N; each sj, is a polynomial in 2n2 indeterminates,
one for each entry in M or N. Likewise there are polynomials pig defining the
product MN. There is a polynomial `det' defining the determinant; in fact there
are polynomials c2 giving each of the coefficients of the characteristic polynomial, so
that for example det(M) = (-1)ncn(M). Also there are polynomials adj23 defining
the adjugate matrix adj(M), so that M-1 = adj(M)/ det(M) when det(M) # 0.

Thus we have morphisms

s : K2n2 Kn2, p : K2n2
Kn2'

cti : K - K, a d j : K -+ K '

There is not a morphism taking M to M-1, since inverse is not defined on the
whole of Endn(K).

A matrix N is said to be nilpotentif Nk = 0 for some k. Clearly if this holds then
the matrix ranks of N, N2.... must fall until they reach 0, and so k can be chosen
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to be at most n. So assuming that N is nilpotent (and that the characteristic p of
K is either 0 or > n), we can define a further morphism exp : End,, (K) -+ End,, (K)
by:

N N'' 'exp(N)=I+ +...+(n-1)!.
One can check that if M, N are nilpotent and commute with each other, then

exp(M + N) = exp(M). exp(N).

This implies that exp(N). exp(-N) = I and hence exp(N) is invertible. It also
implies that if we fix N and define a morphism from K to Endn(K) by

a H exp(aN),

then this morphism is a homomorphism from the additive group K+ of K to the
multiplicative group GLn(K) of invertible matrices in Endn(K).

As a subset of Endn(K), GLn(K) is an open set, since it is the complement of
the set of matrices M with det(M) = 0. But we normally read it another way,
namely as a subset of Kn2+1: there are n2 entries for the matrix and one (say xd)
for 1/ det(M). Then GL,,(K) is a closed subset of Kn2+1, defined by the equation

xd(M). det(M) = 1.

Multiplication is still a morphism on GL,,(M), since

1/ det(MN) = (1/ det(M))(1/ det(N)).

Also we can use the extra coordinate to define an inversion morphism M H M-1
on GLn(K).

A matrix U E GLn(K) is said to be unipotent if U - I is nilpotent. Then since
the Jordan normal form of U - I has zeros down the main diagonal, det U = 1.
But exp(N) is unipotent when N is nilpotent, so we have confirmed that the map
exp defined above is still a morphism when the extra coordinate 1/ det is added.

When U is unipotent, say U - I = N, we can define

log(U) _ (U - I) - (U 2
I)2

+ ... + (-1)n (Un I)i -1.

(with the same assumption as before on the characteristic). Note that because
log(U) is a polynomial in N with no constant term, it is a nilpotent matrix. Hence
we can define a morphism a from K+ to GLn(K) by:

a H exp(alogU).

The image of a contains U, since one can check that

explog(U) = U.
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We shall show later (Lemma 7) that the image is a closed subgroup of GLn,(K);
this fact is far from obvious. Also a is injective (unless U = 1), since we can recover
a from the equation

log exp(alog(U)) = alog(U).

By quantifier elimination there is a quantifier-free formula b(x) which defines
in Kn2+1 the set of matrices which form the image of a. This image is a subgroup
of GLn(K) isomorphic to the additive group K+.

Let M be any subfield of K. Then since exp is defined by polynomials, the
restriction of b to M is exactly the image of the additive group M+ under a, and
it defines a subgroup of GLT(M).

For future reference we note an elementary fact.

Proposition 1 Suppose the field K has prime characteristic p, and U is an el-
ement of GLn(K). Then U is unipotent if and only if it has order p' for some
i.

PROOF. For left to right, put U = I + N with N nilpotent. Then Nn = 0, so
NP" = 0 and hence

Up" = (I + N)p" = Ip" + Np" = I.

Conversely if Up` = I then

(U - I)p` = Up` - Ip` = 0.

0

2 Algebraic groups

Generalising the example above, we define an affine algebraic group (or for short,
affine group) in the field K to be a (Zariski) closed subset G of some K"°, together
with morphisms p : G x G . G and t : G -> G which form the multiplication and
inverse operations of a group on G. The group is defined over a field F C K if
G, µ, t are all defined over F.

Since p is a morphism, translation g H fg (for a fixed f) is a continuous map
from G to G. In fact it is a homeomorphism, because its inverse is a translation
g f -1g. The inversion map t is a homeomorphism in the Zariski topology, since
it is its own inverse.

We note various related notions:

An algebraic group in K is a closed group which is built up by gluing together
sets in K'n on which the group operations are defined by polynomials; see
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(1.13-15) of [2] for a more precise account. I believe that the theorems below
are true for algebraic groups in general (except those explicitly about linear
groups), but the reader shouldn't take my word for this. In any case the
applications will need only affine groups.

A group G is said to be definable in a field M if the set G is definable in
M with parameters, and the group operations are also definable in M with
parameters. WARNING: A group definable over F and a group definable in
F are quite different kinds of animal.

If G is an algebraic group in K which is defined over F, for instance an affine
group, then we write G(F) for its restriction to elements lying in F"°. Since
G and its operations are defined by polynomials, G(F) is a subgroup of G
and it is definable in F.

A subgroup of GLn(K) for some n is called a linear group in K. We shall not
need the following fact, though it may give some reassurance:

Fact 2 An affine group in K is isomorphic (by a morphism) to a linear group in
K. (See Borel [1] Proposition 1.10.)

Proposition 3 Let G be an affine group, and H a subgroup of G. Then the closure
H in the Zariski topology is also an affine group. If H satisfies an identity, for
example if H is abelian, then the same holds also for H.

PROOF. If h E H then the set h-1H is closed since translations are homeo-
morphisms. Since H C h-1H, we deduce AC h-'!I, and translating back again
gives hH C H. So HH = H. Then if g E H, we have Hg C H. So H C Hg-1,
and hence H C fIg-1 since Hg-1 is closed. Therefore Hg C H, which proves that
H is closed under multiplication. A similar argument shows that it is closed under
inverse.

The last sentence is trivial, since H is precisely the set of all points which satisfy
every equation true throughout H.

Corollary 4 Let G be an affine group in K and H C J subgroups of G. If H has
finite index k in J, then H has index < k in J.

PROOF. If j E J, then translating H to the coset jH takes H to TH. The
union of the closures of these cosets is a closed set containing J, so it contains J.
Thus J is contained in at most k cosets of H.

Lemma 5 If X,Y are subsets of an affine group G, then X.Y C XY.

PROOF. If x E X, then the map y H xy on G is continuous and takes Y into
XY, so that it takes f into XY. Thus multiplication takes X x Y into XY. Let y
be any element of Y. Then the map x -> xy on G is continuous and takes X into
XY, so that it also takes X into XY.
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Lemma 6 If W is a dense open subset of an affine group G, then G = WW.

PROOF. Two dense open subsets of a closed set must meet. Take any a E G,
and consider a.W-1. This is also a dense open subset of G, so it meets W; say
b = a.wi 1 = w2. Then a = w2.w1 E WW, so WW = G.

Lemma 7 If G is an affine group in K and H is a subgroup of G which is definable
in K, then H is closed. In particular if F, G are affine groups in K and a : F G
is a morphism, then the image of a is a closed subgroup of G.

PROOF. By quantifier elimination H is constructible, and hence it contains a
dense open subset of its closure H. So by the preceding lemma, fI = HH = H.

We write Z(G) for the centre of the group G.

Proposition 8 If G is an affine group in K and H is a subgroup which is dense
in G, then Z(H) = Z(G) fl H.

PROOF. The inclusion from right to left is immediate. For left to right, clearly
Z(H) C H, so if the inclusion fails, there must be h E Z(H) \ Z(G). Then there is
g E G such that [h, g] t 1. Since the set {g E G : [h, g] # 1} is a nonempty open
subset of G and H is dense in G, we find g' E H such that [h, g'] # 1, contradiction.
0

3 Irreducible sets and connected groups
Recall from [2] (1.5) that a closed set X is irreducible if it is not the union of
two proper closed subsets. If X is definable but not necessarily closed, we say X is
irreducible when the Zariski closure of X in K is irreducible. A maximal irreducible
closed subset of a closed set X is called a connected component of X; X has finitely
many connected components, and is their union.

Lemma 9 If X and Y are irreducible closed subsets of Km, K' respectively, then
their cartesian product X x Y is an irreducible closed subset of Km+'.

PROOF. See for example Hartshorne [5] Exercise 1.3.15.

Lemma 10 If X is irreducible and f is continuous then f X is irreducible.

PROOF. Otherwise let Y, Z be two closed proper subsets of the closure f X
whose union is f XX . Then f -1 X, f -1Y are closed proper subsets of f -1 T Y whose
union is f -'TX-. Since X C f -'TX- and X is an irreducible closed set, we infer
that X lies inside one or other of f -1Y or f -1 Z, say the former. Then

fXC fXCY

and so fXC Y, contradiction.
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An affine group G is said to be connected if the set G is irreducible. For example
K is irreducible (since K is infinite and all nonempty open subsets of K are cofinite),
and thus the additive group K+ is connected.

Let G be an affine group and X, Y two irreducible components of G which
contain the identity element 1. We claim that X = Y. For the product X x Y
is irreducible (by Lemma 9), and hence its image XY under multiplication is also
irreducible (since multiplication is continuous). Now X C XY, and hence X = XY
by maximality. Similarly Y = XY, so X = Y.

Thus G has a unique connected component containing 1; we write it G°. If g is
any element of G°, then gG° is also an irreducible component of G containing 1, so
gG° = G°. Thus G° is closed under multiplication. A similar argument shows that
it is closed under inverse too; so it is a closed subgroup of G. Using conjugation,
the same argument shows that it is a normal subgroup of G.

Proposition 11 G° is a normal subgroup of G. It is also the unique smallest
definable subgroup of finite index in G.

PROOF. We have already proved the first sentence. For the rest, by Lemma 7
the closed subgroups of G coincide with the definable subgroups of G. Now the left
cosets of G° are a family of pairwise disjoint irreducible components of G. Since
G has only finitely many irreducible components, it follows that the index of G° in
G is finite. If H is any closed subgroup of finite index in G, then its left cosets are
also closed, hence open, and therefore they partition any subset of G into disjoint
open subsets. Since G° is connected, it lies inside one coset of H, and so G° C H.
11

Note that by Proposition 11, a connected affine group has no proper definable
subgroups of finite index.

Proposition 12 If G is a connected acne group and W is a nonempty open subset
of G, then W.W = G.

PROOF. This follows from Lemma 6, since any nonempty open subset of an
irreducible closed set is dense.

We finish this section with some properties of G(F) when F is pseudofinite and
G is a connected group in K. They rest on the following, which holds also for all
PAC fields. (See [2] (2.14).)

Fact 13 Let F be a pseudofinite subfield of the algebraically closed field K, and X
an irreducible K-closed set which is definable over F. Then X (F) is Zariski dense
in X, i.e. X = X(F). Equivalently, X(F) meets every nonempty open subset of
X.

The next proposition lists some typical consequences for affine groups.
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Proposition 14 Let F be a pseudofinite subfield of K, and G a connected affine
group definable over F.

1. Z(G(F)) = Z(G) n G(F).

2. If H is a normal subgroup of G(F) which is definable in F, then the closure
of H is normal in G.

3. If H is a subgroup of finite index in G(F), then H = G.

4. F is an irreducible set.

PROOF. The set G is irreducible since G is a connected group.

(1) is immediate using Proposition 8.

(2) We claim first that if g E G then gHg-1 C H. For consider h E H. The set
of g E G such that ghg-1 V H is an open subset of G, and so if it is not empty it
meets G(F), say in g'. Then g'hg'-1 V ft, contradicting that H is normal in G(F).
Now for any g E G the map a H gag-1 is continuous, and so it takes H into H.

set

(3) Let a1, ..., a,,, be representatives of the left cosets of H in G(F). Then the

X =a1HU...UanH
is a closed subset of G. Hence its complement in G is open, and meets G(F) if it is
not empty. But clearly G(F) C X, and so X = G. Since G is connected, G = H.

(4) The closure of F is K, which is irreducible. 0

4 Dimension in pseudofinite fields
We recall the following facts and definitions from Chatzidakis, van den Dries and
Macintyre [3], cf. also [2] §2. Throughout, F is a pseudofinite subfield of the
algebraically closed field K.

Fact 15 1. If X is a subset of F' definable in F, then the dimension dim(X)
is the Krull dimension (= Morley rank) of the Zariski closure of X in Km.

2. Let 0(x, y) be a formula of L and d < w. Then there is a formula 9(i) of L
such that if b is a tuple from F then

dim(O(Fm, b)) = d * F B(b).

3. If X, Y are definable subsets of F"ti,F" respectively, and f is a definable
surjection from X to Y such that the pre-image under f of each element of
Y is a set of dimension d, then

dim(X) = dim(Y) + d.
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Given a pseudofinite field F and a formula 0(x) of L(F), we define the dimension
of ¢ to be that of lb(Fm).

We draw out some immediate consequences.

Proposition 16 If X,Y are definable subsets of Fm, then

dim(X U Y) = max(dim(X), dim(Y)).

PROOF. Taking Zariski closures in K, X U Y = X U Y. But the Morley rank
of X U Y is the maximum of the Morley ranks of X, Y, so the result follows by (1)
of Fact 15.

Proposition 17 A nonempty definable set X C Fm has dimension 0 if and only
if it is finite.

PROOF. A finite nonempty set is already Zariski closed in K, and so its di-
mension is 0 by (1) of the Fact. An infinite set has infinite Zariski closure, so its
dimension is > 1 by (1) again.

Proposition 18 If X, Y are definable subsets of Fm and f is a definable injective
map from X to Y, then dim(X) < dim(Y). If f is a bijection then dim(X) _
dim(Y).

PROOF. If f is surjective, this follows from (3) of the Fact together with Propo-
sition 17, since the preimage of each element of Y has dimension 0. If f is not
surjective, its image has dimension < dim(Y) by Proposition 16.

In particular it follows that if X is a definable subset of a group G definable
in F, and g is an element of G, then the set gX = {ga : a E X} has the same
dimension as X. All the cosets of a definable subgroup have the same dimension.

The next fact from [2] (2.9) is crucial for everything that follows. It is called
the (Si) property, or for short just (Si).

Fact 19 Let X be a definable set in Fm, 9) a formula of L, d < w, and suppose
there are bi (i < w) in F such that each X fl O(Fm, bi) has dimension d and each
X fl cb(F-, bi) fl k(F-, 61) (i # j) has dimension < d. Then X has dimension > d.

For example:

Proposition 20 If G is an affine group defined in a pseudofinite field F, and H
is a subgroup of G which has the same dimension as G, then H has finite index in
G.

PROOF. By Proposition 18, each coset gH has the same dimension as H. So
if H has infinite index in G, we have a contradiction to (Si).
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Corollary 21 Let G be an acne group which is defined over F. Let H be a
subgroup of G(F) which is defined in F. Then H is a subgroup of finite index in
H(F).

PROOF. We have H < H(F) < A. So dim(H) = dim(G(F)), and it follows
by the Proposition that H has finite index in A(F).

5 Affine groups in pseudofinite fields

From this point onwards we write x for x; there is no point in distinguishing
elements from tuples.

Theorem 22 Let F be a pseudofinite subfield of K, and G an affine group definable
over F. Let U be a subset of G(F) definable in F which contains the identity 1 and
has the same dimension as G(F). Let H be the subgroup of G(F) generated by U.
Then H is also definable in F, and has the form

UE' ... UEk

where El,- --,,-k E j1,-1}-

PROOF. Put n = dim(G(F)), and let 6(x, y) be the formula

xEGAyEGAdim(xUflyU)=n.

Put W = 6(G(F),1). If g E W, then gU n U is not empty, and so there are
u1, u2 E U with gul = u2. Then g = u2u11 E U.U-1, so that W C U.U-1.

Now choose inductively elements a, of H so that

a2 aoWU...Uai_1W,

as long as possible. Note that if a; and aj are defined with i < j, then aj-1a.i W,
so

dim(ajU fl aYU) = dim(ai'ajU fl U) < n.

Since the sets aiU have dimension n, it follows by (Si) that the choice of the aY
must halt after a finite number of steps, say when a, has been chosen. Then

H = aoW U ... U a,W C ao(U.U-1) U ... U ao(U.U-1) C H.

Choose m so that ao,...,a, E (UU-1)m. Then H = (U.U-1)m+1

The following theorem is an analogue of the fundamental Irreducibility Theorem
for affine groups over algebraically closed fields. (I use the model theorists' name
for Zil'ber's version of it. Algebraic geometers don't seem to have a name for it,
apart from `Proposition 2.2 of Borel [1]'.)
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Theorem 23 Let F be a pseudofinite field, G an affine group defined over F,
and for each i E I let X(i) be an irreducible subset of G which is definable in F
and contains the identity element 1. Put d = dim G. Let A be the subgroup of
G(F) generated by UZEJ X (i), and let B be A. Then there are i1i ... im E I and
el, , Em E {1, -1} such that

1.

A = X(i1)E'...X(im)Em,

2.

...X(im)Em,B= 7(-i T'

3. B is connected,

4. A has finite index in B(F).

PROOF. Without loss we assume that each X(i)-1 is also a set X(j), and that
the e; to be found are all 1. Choose (i1, ..., ik) so that the set

W = X(i1).....X(ik)

has maximal dimension in G. Since d is an upper bound on the dimension, there
is such a sequence.

Since each X(i) is irreducible, the cartesian product

X(21) X ... X X(im)

is irreducible (by Lemma 9), and so its image under multiplication is also irreducible
(by Lemma 10).

Now using Lemma 5,
WCW.WCW.W.

The two end terms W and W.W are both irreducible, and by choice of W they
have the same dimension. So they are equal, proving that W = W.W. Hence W is
closed under multiplication by any element of W. A similar argument shows that
W-1 C W and hence that W is closed under inverse. Also the same dimension
argument gives that X(i) C W for each i E I. Therefore W is a closed subgroup of
G containing all the sets X(i). Since W C B, we infer that W = B. So by Lemma
7, W = B. This gives (2) and (3).

Now put U = X(i1)...X(im). Then U C A C B(F) C B. But B C_ U by
Lemma 5, and so A = U = B(F). Thus U and B(F) have the same dimension,
and Theorem 22 applies. The result is (1) but in general with a larger value of m;
this is no loss, since (2), (3) survive when we enlarge W so that its factors are the
closures of those of A.

Finally since A and B(F) have the same dimension, Proposition 20 tells us that
A has finite index in B(F), which is (4).
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6 Almost simple groups
Henceforth F is a pseudofinite subfield of the algebraically closed field K.

A morphism between affine groups is called an isogeny if it is surjective and has
finite kernel.

We say that an affine group G over K is simply connected if every isogeny
h : H -+ G with H connected is bijective. (This is an analogue of the notion for
topological spaces. But note that a bijective isogeny between affine groups need
not be an affine group isomorphism.)

A natural question is whether G connected in K implies that G(F) is connected
in F. The next result is a partial positive answer.

Proposition 24 Let G be a connected and simply connected affine group in K
which is definable over F. Then G(F) has no proper subgroups of finite index
which are definable in F.

PROOF. Hrushovski and Pillay [7] prove that if J is a proper subgroup of finite
index in G(F) which is definable in F, then there are a connected affine group H
defined over F and an isogeny f : H -+ G definable over F, such that f (H(F)) has
finite index in J. (This is the main theorem in [2] §3.) Since G is simply connected,
f is bijective. Then for each element g of G(F) \ J, f -1(g) is in H and is definable
over F, and hence is in H(F) since F is pseudofinite and therefore perfect. So
g = f f -1(g) is in J; contradiction.

We say that an affine group G in K is almost simple if it is non-abelian and has
no closed infinite proper normal subgroups (or equivalently, no closed connected
proper nontrivial normal subgroups).

Lemma 25 Let G be an almost simple infinite affine group in K. Then G is
connected, Z(G) is finite and G/Z(G) is simple as an abstract group.

PROOF. First, G is connected. For otherwise by Proposition 11, G has a proper
closed normal subgroup of finite index in G.

Next, the subgroup Z(G) is normal and closed. If it is infinite, it must be the
whole of G, which contradicts that G is non-abelian. So Z(G) is finite. If G/Z(G)
is not simple, then G has a proper normal subgroup N which properly contains
Z(G). Let a be an element of N \ Z(G). Then aG is a subset of N containing
more than one element; it is irreducible since G is connected and conjugation is
continuous. Hence aG(a-1)G is irreducible, infinite and contains 1. So by applying
the irreducibility theorem (Proposition 2.2 of Borel [1]), the normal subgroup of G
generated by a is closed; since it lies inside N, it is proper in G. This contradicts
that G is almost simple.
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In the rest of this section, we consider how far almost simplicity is preserved 
from G to G(F). We begin with two lemmas. 

Lemma 26 Let G be a connected affine group defined over F. Suppose G(F) has 
finite centre. Then every infinite nonnal subgroup H of G( F) contains an infinite 
normal subgroup of G( F) which is definable in F and irreducible in J(. 

PROOF. Since H is infinite and Z(G(F)) finite, there is a E H \ Z(G(F». 
Then in F we can define the set X = aG(F). Now G( F) is dense in G by Fact 
13, and hence G(F) is irreducible. Therefore X is irreducible by Lemma 10. Since 
a f/. Z(G(F», X has more than one element, and hence (being irreducible) it must 
be infinite. 

So X.a- I is an irreducible infinite set containing 1. By the Irreducibility The­
orem (Theorem 23), the subgroup HI of G(F) generated by X.a- I is definable in 
F and irreducible. Since X ~ H, we have HI ~ H. Also HI is normal in G(F); 
for this it suffices to test the generators of HI. Consider gag-la-I and an element 
h of G( F); we have 

hgag-Ia- I h- I = (hg)a(hg ,-Iha-I h-I 

= (hg)a(hg)-Ia-I.(hah-Ia-I)-I E HI. 

Finally HI is infinite. 0 

The following standard group-theoretic lemma may be worth repeating here: 

Lemma 27 Let G be a group and H a proper subgroup of finite index in G. Then 
the intersection of all conjugates of H in G is a proper nonnal subgroup N of finite 
index in G. If G and H are definable in some surrounding structure, then so is N. 

PROOF. Since H has finite index in G, so does its normaliser N(H). Hence 
II has only finitely many conjugates in G, and we can define their intersection N 
by finitely many parameters. The intersection of finitely many subgroups of finite 
index again has finite index. 0 

Proposition 28 If G is an almost simple affine group in K defined over F, then 
G( F) has a normal subgroup N of finite index which is definable in F, such that 
N/Z(N) is simple as an abstmct group. 

PROOF. By Proposition 14 (1), Z(G(F» = Z(G) n G(F). Hence G(F) has 
finite centre. By Lemma 25, G is connected. 

We claim that G(F) has no infinite normal subgroup of infinite index. For 
otherwise by Lemma 26 there is an infinite normal subgroup II of infinite index 
which is irreducible and definable in F. Then H has smaller dimension than G(F) 
by Proposition 20, and so the closure fI of H is a closed connected nontrivial proper 
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subgroup of G (using Proposition 3). But H is also normal in G by Proposition 14
(2). This contradicts the assumption that G is almost simple.

We claim next that in F, G(F) has a smallest definable subgroup of finite index.
For otherwise there is an infinite descending sequence of definable subgroups of
finite index in G(F). Using Lemma 27 we can assume they are all normal, so that
their intersection is a normal subgroup of infinite index. By saturating we can
assume that this intersection is infinite, thus we get a contradiction to the previous
claim. Our claim is proved.

Let N be a smallest subgroup of finite index in G(F) which is definable in F.
Then N is normal in G(F) by Lemma 27. By Proposition 14 (3), N = G, and so
Z(N) = Z(G) fl N by Proposition 8, whence N has finite centre.

It remains to prove that N/Z(N) is simple. For contradiction, let J be a
normal subgroup of N which contains a noncentral element a. Recalling the proof
of Lemma 26, we form the sets X = aG(F) and Y = aN. We have

JJYa-1CXa-1CN.
As before, Xa-1 is irreducible and hence infinite. Also N has finite index in G(F),
and hence X is the union of a finite number of conjugates of Y. By Proposition 16
it follows that Ya-1 and Xa-1 have the same dimension. Hence Ya-1 and Xa-'
have the same closure in G, since in the Zariski topology on K, a proper closed
subset of a closed set W must have strictly smaller dimension. Also as before, the
subgroup C of G(F) generated by Xa-' is normal and infinite, so that by our first
claim it has finite index in G(F). By the Irreducibility Theorem (Theorem 23), C
is definable in F, and hence it must equal N.

Let D be the subgroup of G(F) generated by Ya-1; then D C J. By the
Irreducibility Theorem again, D is definable in F and has finite index in B(F)
where B is the least closed subgroup B of G containing Ya-1. But B is also a
closed subgroup of G containing the closure of X a-1, and so N = C C B(F). Thus
D has finite index in N, so that D is equal to N by choice of N. But D C_ J C N,
and thus J = N.

Corollary 29 Let G be an almost simple and simply connected affine group defined
over F. Then G(F) is simple modulo its finite centre.

PROOF. By Lemma 25, G is connected and its centre is finite. According to
Proposition 24, G(F) has no proper subgroups of finite index which are definable
in F. It follows at once from the Proposition that G(F) is simple over its centre.
0

7 Reduction at a prime
For our remaining two sections, the algebraically closed field K is always the com-
plex numbers C.
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Let p be a prime. The well-known reduction homomorphism r : Z -+ ]FP takes
each integer n to n (mod p). We can extend r to the ring Z(P) of all rational
numbers whose denominators are prime to p. In fact this ring is local, with maximal
ideal pZ(p), and r : Z(p) - Fp factors out pZ(p). This extended map r is a ring
homomorphism. Also r(1/a).r(a) = r(1) = 1, so r takes each element 1/a in Z(p)
to (ra)-1 in FP; thus r respects inverses where they exist.

Obviously we can extend r yet again to the product ring ZAP), for any positive
integer n, to get a map

r : 7i (P) -' ]FP .

If F is any subset of Z(nP), then we write F/p for the image of F under r. For example
if F is a subgroup of GL,(Q) generated by a set of matrices whose entries and
determinants are all prime to p, then F/p is well-defined. (Why the determinants?
Because we agreed that in a linear group, one of the coordinates of each element a
should be det(a)-1.) The reduction map r restricts to a group homomorphism

r:F+F/p
because multiplication and inverse are defined by equations.

Algebraic geometers reserve the expression reduction at p for a different exten-
sion of r. Namely, let X0,..., Xn_1 be indeterminates, and extend r to a surjective
ring homomorphism

p: Z(P)[X1i...,X.] - ]Fp[X1,...,X,}

by applying r to the coefficients. Then for example if I is an ideal in Z(P)[X1, ..., Xn],
pI is an ideal in 1Fp [X1, ... , Xn].

Suppose in particular that V is a Q-closed subset of Gn. This implies (since Q
is perfect, see Borel [1] 12.2) that the ideal I(V) of all polynomials in C[X1, ..., Xn]
which vanish on V is generated by a finite set J of polynomials lying in Q[X1i... , Xn];
in fact we can choose J so that it lies in Z[X1, ... , Xn]. Then, writing ]F for the
algebraic closure of FP, the set of points of ]Fp where pJ vanishes is called the re-
duction of V at p; we shall write it VP (noting for future reference that it depends
on J).

Lemma 30 If V is as above, then the restriction homomorphism r gives a map

r : V(Z(p)) --a V,(FP)

In general this map is not surjective.

PROOF. If a is a point of V(Z(p)) and F is a polynomial vanishing at a, then
F(a) = 0, so (pF)(ra) = 0 when we apply r throughout; hence ra E Vp(]FP). For
an example where r is not surjective, let V be the set {f\} and p the prime 7.
The ideal corresponding to V is generated by the polynomial X2 - 2, so V7(]F7)
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consists of the numbers 3 and 4 (mod 7). But there is no rational number a such
that a2 = 2.

There is a problem about this definition of V,: it depends on the choice of J.
For example if we write pJ for the set of polynomials pF with F E J, then pJ
generates the same ideal I(V) over the complex numbers, but using pJ instead of
J would make V7, the whole of 1'p. Fortunately the next lemma will save us the
trouble of looking for a more canonical definition.

Lemma 31 If J and J' are finite subsets of Z[X1i...,X,,] which generate the
same ideal in C[X1 i ... , and V7, and V7 are the corresponding sets in ilP, then
Va, = Vp for all but finitely many primes p.

PROOF. Suppose J = {Fo, ..., Fk} and J' _ {Fo..... F,,,}. Since J lies in the
ideal generated by J', there are polynomials Gij over the complex numbers, such
that each Fi is >j Gi;Fj. These equations reduce to a matrix equation MH = N
where M and N are integer matrices determined by J' and J respectively, and H
is a column matrix consisting of all the coefficients in the polynomials Gi;. If such
a matrix equation has a solution H in the complex numbers, then it has one in the
rationals; so without loss we can assume that the polynomials Gij have rational
coefficients. Likewise there are polynomials % defining J' from J, and again they
can be chosen with rational coefficients. For any prime p not dividing any of the
coefficients of the Gij or the pJ and pJ' generate the same ideal over ]F p.

If J is a set of polynomials with integer coefficients, then we can write a con-
junction g5(xo,...,x,,,_1) of equations in the language L of rings, such that

C = 0(a) . all polynomials in J vanish on a.

Then
]Fp 4(ra) . all polynomials in pJ vanish on ra.

This is because we interpret each term n of L in ]Fp as a name of n mod p.

Reduction at a prime is a fundamental technique in number theory. Typically
one has some property of a Q-closed set X, and one says that there is good reduction
at the prime p if Xl p also has this property, and bad reduction at p otherwise. One
often finds that there is good reduction at all but finitely many primes, and the
task is to calculate the exceptions.

Proposition 32 Let G be a closed subgroup of GL,,,(C) defined over Q, and F a
finitely generated subgroup of G(Q). Let P be the set of primes p such that Gp(]FF)
is a group and F/p is a subgroup of Gp(FF). Then P contains all but finitely many
primes.

PROOF. As before, we can suppose that G is defined over Z. Let 0 be a sentence
of L expressing that G is a group. Then 0 is true in C, so by compactness, the set
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P1 of all primes p such that & is true in ]Fp contains all but finitely many primes.
For each p E PI, G,(]F!) is a subgroup of G,(]??), since multiplication and inverse
are defined by equations. Let P2 be the set of primes which don't divide either the
determinant, or the denominator of any entry, of any generator of r. Then r/p is
a well-defined subgroup of G,(]?) for each p E P1. The set P = P1 fl P2 will serve.
13

8 A theorem on reduction
The following theorem is from Matthews, Vaserstein and Weispfeiler [8]. The bad
news is that their proof uses the structure theory of Lie algebras and the classifi-
cation of finite simple groups. The good news is that they have an explicit bound
on the rogue primes. Our proof (from Hrushovski and Pillay [7]) is non-effective
but really rather easy.

Theorem 33 Let G be an almost simple, simply connected closed subgroup of
GLn(C) which is defined over Q, and let F be a finitely generated subgroup of G(Q)
which is Zariski-dense in G. Then for all but finitely many primes p, F/p = G,(]? ).

Before we prove this, here is an example. Let G be the group SL2(C) of 2 x 2
matrices with determinant 1. Let r be the subgroup of G(Q) generated by the
matrices

1

2

0 2)'(01)'(11
Then G is simple, simply connected and defined over Q, and it has dimension 3.
To show that r is Zariski-dense in G, one method is to check first that the group

tn{
0

d):a,dECI

is infinite and hence has Morley rank at least 1. Multiplication by powers of

gives infinitely many cosets of this subgroup, so that

I fl { (0 ):abdC}
has Morley rank at least 2; then a similar argument with the third generator of
F shows that r has Morley rank at least 3. Since F C SL2(C) and SL2(C) is
irreducible, this shows that r = SL2(O).

We try two primes. At p = 2, r/2 is undefined because of the 1/2 in the first
generator. At p = 3, r/3 is defined, and it is generated by the matrices

(0 2)'(0 1)'(1 1
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One can verify that r/3 is the whole of SL2(F3 ). The theorem says that all but
finitely many primes behave like 3.

PROOF of Theorem 33. The proof rests on the following construction. Let S
be the set of primes > n which are in the set P of Proposition 32 (here we use the
fact that 1' is finitely generated). Let U be a nonprincipal ultrafilter on S. We form
the ultraproduct G" = HpESGp(]Fp)/U. As always with ultraproducts, we can add
other structure. For example I'/p is a subgroup of Gp(Fp) for each prime p. We
add a symbol I" which picks out, for each prime p E S, the set F/p in the p-th
factor. Then the interpretation I'U of r' in the ultraproduct is a subgroup of GU.
Likewise we can add the field ]Fp to the p-th factor, getting an ultraproduct field
FU.

Since U is a nonprincipal ultrafilter and the primes S are arbitrarily large, the
field FU is pseudofinite and of characteristic 0. Since Gp(]Fp) is a subgroup of
GL,,(Fp) for each p E S, the group GU is a subgroup of GL,,,(FU).

Lemma 34 GU C G.

PROOF. We have to show that if a E GU and E(x) is one of the defining
equations of G, then a satisfies E. Multiplying out denominators, we can write E
in the language of rings. Each element a(p) satisfies E in Gp(Fp), and so a satisfies
E by Log's theorem. Lemma

Lemma 35 G(Q) C GU.

PROOF. Every element of G(Q) is a matrix whose entries are explicitly defin-
able in C by formulas of the language L. Lemma

In particular r c FU. Since F is Zariski-dense in G, it follows that FU is also
Zariski-dense in G.

Lemma 36 1'U contains an infinite subgroup which is definable in FU and irre-
ducible.

PROOF. It suffices to show that Fu contains a unipotent element U. For
then we can apply the map exp(alog(U)) of Section 1, which maps the additive
group F's to an infinite subgroup J of GU. (We chose S so that the restriction on
characteristic is met.) As noted in section 1, this subgroup J is definable in F"
by the definition of exp(alog(U)), which is a polynomial. So it is irreducible by
Proposition 14 (4). In the ultraproduct, U(p) is a unipotent matrix in F/p for all
but finitely many primes p; hence the matrices exp(alog(U(p))), as a runs through
Fp, are powers of U(p) and therefore lie in F/p too. It follows that J C FU.

To find U we go by contradiction. Suppose no element of FU is unipotent.
Since there is a formula uniformly defining the unipotent elements in GL,,,(A) for
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any field A (namely (u - fl' = 0), it follows that only finitely many of the groups
F/p contain a unipotent element. Then Proposition 1 implies that for all but
finitely many primes p in s, F/p contains no elements of order p.

Now we quote a fact:

Fact 37 Let p be a prime and G a finite group with no p-power elements. If
9 : G -- GL,(]Fp) is a representation, it can be lifted to a p-adic representation
9' : G -> GLAp), so that 9 is recovered by factoring out the maximal ideal of Zp.

PROOF. See Proposition 43 of Serre [10].

Since the field Zp of p-adic numbers is embeddable in C, this fact tells us that
for all but finitely many primes p the group I'/p has a faithful representation in
GL,,(C). We need another fact:

Fact 38 (Jordan) Let G be a finite subgroup of G has a normal
abelian subgroup of index at most d(n), where d(n) is an integer depending only on
n.

PROOF. See Curtis and Reiner [4] p. 258ff.

So for all but finitely many primes p, F/p has a normal abelian subgroup Op of
index at most d(n). Adding a symbol for the groups Op to the ultraproduct, we
recover a normal abelian subgroup Du of finite index in I'u. Then by Corollary 4
the closure of Du has finite index in the closure of Fu, which is G. Since G was
assumed connected, it must be the closure of Au, and hence by Proposition 3 must
be abelian, contradicting that G is almost simple. This contradiction proves the
lemma. 0 Lemma

Consider the irreducible infinite subgroup J of I'u in Lemma 36. By the Irre-
ducibility Theorem (Theorem 23), the normal closure H of J (generated by the
groups J9 with g E Fu) is a subgroup of 11 which is definable in P. Then the
normaliser H1 of H in G(F1) is definable in Fu and contains Fu. Thus we have
H c Fu C H1 C G(F1); we shall show that the end terms of this chain are equal.

Since G is the closure of Fu, it is also the closure of H1. Hence H1 and G(F')
have the same dimension, so that by Proposition 20 it follows that H1 has finite
index in G(F"), besides being definable in F. This is where at last we invoke
Proposition 24 (proved in [2]), to deduce that H1 = G(F"). So H is an infinite
normal subgroup of G(F") definable in F". Then H.Z(G(F")) is a normal sub-
group of G(F") containing the finite centre of G(F"). So by Corollary 29 (another
application of Proposition 24), H.Z(G(F")) = G(F1), and hence H has finite in-
dex in G(F"). Then by Proposition 24 a third time, H = G(F"), trapping Fu so
that Fu = G(F").

Since we showed in Lemma 34 that GU C G and hence C G(F"), it follows that
Gu C Fu, and hence Gp(]Fp) = F/p for all p in some set in U. But the ultrafilter
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was chosen arbitrarily, and hence G,(F,) = t/p for all but finitely many primes in
S, and therefore for all but finitely many primes. 0
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The group of automorphisms of the field of complex
numbers leaving fixed the algebraic numbers is simple

Daniel Lascar

In this short article, we will prove the following theorem:

Theorem 1 The group of automorphisms of C which leave fixed every algebraic
number is simple.

(Here, C denotes the fields of complex numbers.)
This result is already mentioned in [1], where it is proved with the help of

the continuum hypothesis, which will not be used here. (In fact it appeared as a
particular case of a much more general result). A preliminary version of the present
paper is to be found in french in [2].

Lets us first introduce some notation:
G will denote the group of automorphisms of C which leave fixed the algebraic

numbers;
S2 will denote the set of algebraically closed subfields of C which are of cardi-

nality strictly less than 2°;
if K E 12, GK will denote the group of automorphisms of K which leave the

algebraic numbers fixed and AUtK(C) the group of automorphims of C which leaves
fixed the elements of K.

We will need the following lemma.

Lemma 2 Assume that g E G and K E 12 are such that, for all a E C, g(a) is
algebraic over K(a). Then g is the identity on C.

A proof of Lemma 2 is given in [1]. M. Ziegler (private communication) has
given another proof which works in any characteristic. We give here a third proof
which is completely elementary and which can be easily generalized to non zero
characteristic.

Proof. Let g and K be as in the lemma.
Assume for a while that there exists an element a E C - K such that g(a) = a.

We show that, in these conditions g is the identity map. Let b be another element
of C which is not algebraic over K(a). Then g(b) is algebraic over K(b), and so
is g(b) - b. On the other hand, g(a + b) = a + g(b), and so, a + g(b) is algebraic
over K(a + b), and so is a + g(b) - (a + b) = g(b) - b. Thus, we see that g(b) - b is
algebraic over K(b) and over K(a+b), and must belong to K, since b and a+b are
algebraically independent over K. Set c = g(b) - b. For the same reason, g(ab) - ab

110
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belongs to K. But g(ab) = g(a)g(b) = ab + ac, so ac belongs to K, and this implies
c = 0. This means that g is the identity on C - K, thus on C itself.

We now return to the general case. Let a an element which is not in K. Set a' _
g(a) and let P(X, X') be a polynomial with coefficients in K such that P(a, a') = 0
and of minimal degree. It is easily seen that P(a, X') is a polynomial with coefficient
in Ii (a) of minimal degree such that P(a) = 0. We also notice that, if c does not
belong to K and if c' is such that P(c, c') = 0, then there exist a K-automorphism
of C which sends a to c and a' to c'. We show that P(a, X') = 0 has only one
solution in C.

Indeed, let b be another element of C which is not algebraic over K(a) and
K1 be the algebraic closure of K(b). The polynomial P(a, X') is again of minimal
degree among all polynomials with coefficients in K1 for which a' is a zero. So,
if a" E C, and P(a, a") = 0, then there exists a K1-automorphism f of C which
leaves a fixed and sent a' to a". Then, the automorphism h = g o f o g-1 o f_1
leaves b fixed and sends a" to a' and is such that, for all c E C, h(c) is algebraic
over K(c). We just saw that this implies that a' = a".

So, we infer that the degree of P in the variable X' is equal to 1. For the same
reason, its degree in the variable X is also equal to 1. In other words, g(a) = as+(3,
for some elements a and ,3 of K. If we apply the same argument to a2, we see that
there exist y and b in K such that g(a2) = ya2 + b = a2a2 + 2aa/3 +02, which
implies that /3 = 0, and, using this fact for a+ 1, we get g(a+ 1) = as+1 = e(a+ 1)
for some F E K; this implies that a = 1 and that g is the identity map.
Q

The Theorem 1 is an immediate consequence of the following proposition:

Proposition 3 Let g be an element of G, g not the identity. Then

G = gG 0 (9-1)G 0 (9-1)G 0 gG.

(gG denotes the set {h-1gh ; h E G}).

Proof. For this proof, we fix an element g of G, g # 1. We will need some more
notation.

X denotes the map from GxG to G defined by X(h, k) = h-1 ogok-1 og-1 okoh.
We see that X(h,g) E 9G 0 (g-1)G

If K E fl and g [K] = K, XK denotes application from GK x GK to GK
defined by XK(h, k) = h-1 o (g I K) o k-1 0 (9-1 1 K) o k o h.

The combinatorial part of the proof is contained in the following lemma:

Lemma 4 Let K E Q, g [K] = K , h, k in GK , K' E Sl and f E GK'. Suppose
that K C K' and that f extends XK(h, k). Then, there exist h' and k' in G such
that X(h',k') extends f.

We will need the two following sublemmas. Here and later, independent means
algebraically independent and the dimension of a field is the cardinality of a tran-
scendence basis of this field.
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Sub-lemma 5 Assume that Iio , K1 and K2 are in S1, that KO C KI, that KO C
K2 and that K1 and K2 are independent over Iio. Moreover, assume that h1 E
GK,, that h2 E GK2, and that h1 I Ko = h2 I Iio = h . Then there exists an
automorphism h in G which extends both h1 and h2.

Proof. Let K be the field generated by K1 U K2. We may define a map h of K
to K in the following way: every element b of K can be written R(bo, Y1-, b2), where
R is a rational function with coefficients in Z, bo is a sequence of elements in Ko, b1
is a sequence of elements in Ii1 - Iio, and b2 is a sequence of elements in K2 - KO-
We set: h(b) = R(ho(bo), hi(bi), h2(b2)). It is straightforward to check that the map
h is well defined (h(b) does not depend on the representation R(bo, b1i b2) which
has been chosen) and that h is an automorphism of K which can be extended to
C.

0

Sub-lemma 6 Let K E S2 be such that g [K] = K and A a cardinal not bigger than
210. Then there exists K1 E 5l , K C K1 such that K1 and g [K1] are independent
over K and dim(Ki/K) = A.

Proof. By induction we construct a sequence (ai ; i E A) of points in C such
that: for all i E A, ai is not algebraic over K({aj; j < i} U {g(ad) ; j < i}) and
g(ai) is not algebraic over K({g(ad) ; j < i} U {aj ; j < i}). This is possible by
lemma 2. Then, set K1 to be the algebraic closure of K(ai; i < A).
Q

We can now start the proof of Lemma 4.

Proof. We can find hi E G extending h which leaves K' setwise fixed. Set
h2 = h1 I K'. We have to construct h' and k' in G extending respectively h and k
such that:

(1) h'-l o g o k'-l o g-1 o k' o h' extends f
but we will rather construct a E AutK(C) and k' extending k such that:

(2) a-1 o g o k'-1 o g-1 o k' o a extends h2 o f oh21.
(Then it will suffice to take h' = a o hi). From Sub-lemma 6, we know that there
exists Iio E fl such that K C Ko, dim(Ko/K) = dim(K'/K) and that Iio and
K1 = g [Iio] are independent over K. Choose a E AUtK(C) in such a way that
a [K'] = Ii 1. Let fi E GK, be the map a o h2 o f oh21 o a-1 (in fact, we should write
fi =(aI K')oh2o foh2lo(aI K')-I ).

Now, we have to find k' E G extending k such that:
(3) g o k'-1 o g-1 o k' extends fl.
Let k1 E GK1 extending k and ko E GKo extending g-1 o ki 1 o f1 o g (or, more

exactly, extending (g I Ko)-1 o f1 o ki 1 0 (g I Ko) ). Then g o ko 1 o g-1 equals
fi o ki 1 and we see that ko I Ii = k (because fi extends g o k-1 o g-1 o k ). By
Sublemma 5, there exists k' E G extending both ko and k1. Then g o ki-1 o g-1 o k'
extends g o ko1 o g-1 o ki = fi.
Q

Here is a slight modification of Lemma 4
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Lemma 7 Let K E 52, g [K] = K, h and k in GK, K' E St, f E G and b E GK'.
Assume that K C K' and that b extends XK(h, k). Then, there exists K, E 52, hl
and k, in GK, such that K' C K,, g [K,] = K, = f [K1], card(KI) = card(K)
and XK, (hl, kl) extends b.

Proof. We first construct automorphisms h' and k' as in the preceding lemma,
and then, by an argument of Lowenheim-Skolem type, we find a subfield say K, E Q
such that K' C K,, g [KI] = h' [KI] = k' [K1] = f [K1] = K, and card(KI) _
card(K'). Then, it suffices to set h, = h' K1 and k, = k' I K1.
Q

Let f E G. We are going to show that there exist h., k., h;, and k' such that
X(h., k.) o (X(h;, k;))-1 = f. The following lemma is a first step in this direction.

Lemma 8 Let K E S2, g [K] = K , h , k , h' , k' in GK , a E C and assume
that f extends XK(h, k) o (X(h', k'))-1. Then there exist K1 E 52 a E K, and h1,
k,i hi, ki in GK, extending h, k, h', k' respectively such that g [K,] = h1 [K1] =
k, [K1] = hi [K1] = ki [K1] = K1, card(Iii) = card(K) and f extends XK, (h1, k1) o
(XK,(hi,ki))-1.

Proof. We first choose K1 E Q such that card(K1) = card(K), a E K1,
g [Ii I] = K1 and f [K1] = K'. Let h" and 0 be in GKi extending respectively
h' and V. We see that (f I K1) o XK, (h'1, k'1) extends XK(h, k). By Lemma 7, we
find K2 E 9 such that card(K2) = card(K), g [K2] = K2, f [K2] = K2 and h2
and k2 in GK2 extending respectively h and k such that XK2 (h2, k2) extends (f
K') o XK, (hi1, 0). In other words, (f I K2)-1 o XK2(h2, k2) extends XK1(hi1, 0).
Again by Lemma 7, we find K3 E S2 such that card(K3) = card(K), g [K3] = K3,
f [K3] = K3 and h'3 and k'3 in GK3 extending respectively h" and 0 such that
XK3(hi3,0) extends (f I K2)oXK2(h2,k2). Now, (f I K3)-10XK3(h'3,k'3) extends
XK2(h2, k2) and this way, we build a increasing sequence (Ki ; i E w) of elements
of S2 and increasing sequences (hi ; i E w, i even), (ki ; i E w, i even), (hi ; i E w, i
odd), (k'i ; i E w, i odd) in such a way that, setting K1 = UiEw K', h1 = UiE, h2i,
k1 = UiEw k2i+ h'1 = UaEw h'2i+1, k'1 = UiEw k'2i+1' we get what was needed.
Q

We can now complete the proof of Proposition 3. Let {aa+i ; a E 2R0 } be an
enumeration of C; we build by induction increasing sequences (Ka ; a E 2 0 ) of
elements of 52, (ha ; a E 2'0), (ka ; a E 2'0 ), (h« ; a E 2K0 ), (k', ; a E 2"0 ) of
elements of GK,, such that for all a E 2K0 , f [Ka] = ka, g [Ka] = Ka, as E Ka+i
and f extends XK, (ha, ka) o (X(h«, k«))-1. We start with KO equal to the field of
algebraic numbers and ho, ko, ho, ko equal to the identity on Ko ; afterwards, we
use Lemma 8 at non limit stages, and take the union of what we have got so far
at limit stages. It suffices to set h. = UaE2"o ha, k* = UcE2HO ka, h. = UaE2Ho ha,
V* = U 'ka,
Q
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The automorphism group of the field of complex
numbers is complete

David M. Evans and Daniel Lascar

1 Introduction and notation
A group is complete if all its automorphisms are inner. The aim of this article is
to prove the theorem stated in the title, assuming the continuum hypothesis. We
will prove the following more general theorem:

Theorem 1 Assume that L is an algebraically closed field of characteristic zero,
either countable of infinite transcendence degree, or of cardinality 2' _ A+ for some
infinite cardinal A. Then its automorphism group is complete.

See the final section for various generalisations, including to non-zero charac-
teristic.

Some notation
In all the paper except the final section, L will be a field satisfying the hypothe-

ses of the theorem; Aut(L) will denote its automorphism group, and Aut(Aut(L))
the automorphism group of Aut(L). If X C L, then

Aut(L/X) = If E Aut(L); f is the identity on X}.

We will denote by fl the set of algebraically closed subfields of L whose tran-
scendence degree is strictly less than the one of L.

If a is a map from a set X to a set Y and Z is a subset of X, then a [Z] will
denote the image of Z under a. If G is a group and X a subset of G, then (X) will
denote the subgroup of G generated by X.

The proof will rest essentially on two ingredients. The first one is the small
index property. If H is a subgroup of Aut(L), we will say that H has small index
if the index of H in Aut(L) is not bigger that the cardinality of L. We will use the
following result (see [3] or [4]):

Theorem 2 Let H be a subgroup of small index in Aut(L). Then there exists
k E S2 such that Aut(L/k) C H.

115



116 D. M. Evans, D. Lascar

The second ingredient is a theorem of Evans and Hrushovski and needs some
explanation. If X is a subset of L, we will denote the algebraic closure of the field
generated by X by acl(X ). The map acl from V(L), the power set of L, to itself
satisfies the following properties for any subsets X, Y of L and any x, y in L:

1. X C acl(X) and if X C Y, then acl(X) C acl(Y);

2. acl(acl(X)) = acl(X);

3. If x acl(X) and x E acl(X U {y}), then y E acl(X U {x});

4. acl(X) = Ux0Cx, X. finite acl(Xo).

We have here what is called a pregeometry. We want a geometry, that is a
map which, in addition satisfies the property that the closure of a singleton is the
singleton itself. For that purpose, we consider the set

G = {k C L ; k is algebraically closed and of transcendence degree 1} .

The map acl naturally induces a map cl from p(G) into itself: if X C G

cl(X) = {k E G; k C acl(UX)},

and now we have a geometry, that is the following properties are satisfied:

1. X C cl(X) and if X C Y, then cl(X) C cl(Y);

2. cl(cl(X )) = cl(X );

3. If x cl(X) and x E cl(X U {y}), then y E cl(X U {x});

4. cl(X) = Uxocx, xo finite cl(Xo);

5. cl({x}) = {x}.

We will denote by Aut(G) the automorphism group of the geometry G, that is
the group of permutations p of G such that, for every x E G and X C G, x E cl(X )
if and only if /3(x) E /3 [X] .

Now let a E Aut(L); a naturally induces a map spa from cG onto itself by:
cpa(k) = a [k], and it is clear that cp., E Aut(G ). Moreover, the map cp from
Aut(L) to Aut(G) defined by: V(a) = cp,,, is a group homomorphism. The theorem
of Evans and Hrushovski (Theorem A of [2]) states:

Theorem 3 The map <p is a surjective homomorphism from Aut(L) onto Aut(G).

On the other hand,

Theorem 4 The map p is injective.



The automorphism group of C is complete 117

Proof. This is an easy consequence of Theorem 1.1 of [2]. See also the remark
after Lemma 2.5 of [2].
O

The intuition behind the proof of Theorem 1 is to `interpret' the field L into
the group Aut(L). Given this interpretation, any automorphism a E Aut(Aut(L))
induces naturally an automorphism y of L. It will only remain to prove that a is
nothing else than conjugation by y.

The interpretation is done in two steps. First, in the second section, we interpret
the geometry G into Aut(L). It is there that the small index property is used. The
precise result that we will get is:

Proposition 5 Let a E Aut(Aut(L)). Then for any algebraically closed field k
of finite transcendence degree, there exists a unique algebraically closed field k' of
finite transcendence degree such that a [Aut(L/k)] = Aut(L/k').

The second step is the interpretation of L into G. This is contained in the paper
of Evans and Hrushovski ([2]), and gives Theorem 3 above. We will prove Theorem
1 from Proposition 5 in Section 3. In the final section, we will indicate how this
result can be generalised.

2 Proof of Proposition 5
We first state some facts that will be needed.

Lemma 6 Assume that Iio, K1 and K2 are elements of 12 and that K1 and K2 are
independent over Iio. Then

Aut(L/Ko) C (Aut(L/Kl) U Aut(L/K2)).

Proof. Let G = (Aut(L/Kl) U Aut(L/K2)) . Without loss, we can assume that
KO C K1nK2. Then independence of K1 and K2 over KO means that KO = K1nK2
and there exists a transcendence basis X of L with Xi = X n Ki a transcendence
basis for Ki, for i = 0, 1, 2. Let g E Aut(L/Ko). There exists Y C X of cardinality
less than that of X such that K1iK2,g[K1] C acl(Y). Find Z C X \ Y with
the same cardinality as X1 \ X0. Then there exists h E Aut(L/K2) such that
h[Xi] = Xo U Z. Let K3 = acl(h[Xi]). Thus Aut(L/K3) _< G. There exists
k E Aut(L/K3) such that g and k have the same restriction to X1. Moreover, as
any automorphism of K, which fixes KO can be extended to an automorphism of
L fixing K3, we can choose k so that it has the same restriction to K1 as g. Thus
k-1g E Aut(L/Ki), so g E G.

Lemma 7 Assume that Ko, Iii and K2 are elements of fl, that KO = K1 n K2 and
that K1 and K2 are of finite transcendence degree over Iio. Then

Aut(L/Ko) = (Aut(L/Kl) U Aut(L/K2)) .
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Proof. Let n1, n2, n3 be the transcendence degrees of K1, K2, acl(Kj U K2)
over KO respectively. The proof will proceed by induction on m = ni + n2 - n3.
If m = 0, then K1 and K2 are independent over KO, and the result follows from
Lemma 6. We will need the following fact

Fact : Let Lo, L1, L2 be algebraically closed fields, included in some big field H
and assume that Lo = Ll n L2. Let a be a finite sequence of elements of H which
is algebraically independent over L1 U L2. Then acl(Li U {a}) n acl(L2 U {a}) _
acl(Lo U {a}).

It is sufficient to prove this fact in the case where a is a single element (by
induction). Let cl and c2 be transcendence basis of Ll and L2 respectively over Lo.
Assume, toward a contradiction that a E acl(L1U{a})nacl(L2U{a}), a acl(LoU
{a}). Let Pi(x, a, Ti) and P2(x, a, 72) be minimal polynomials with coefficients in
Lo such that Pl (a, a, cl) = 0 and P2(a, a, c2) = 0. Consider the set of elements y
such that:

the degree in x of both Pi(x, y, cl) and P2 (x, y, c2) is positive;

P, (x, y, cl) = 0 and P2 (x, y, C2) = 0 have a common root.

This set is definable (or constructible, if you prefer), and since it contains every
point which is not algebraic over L1 U L2, it contains all but a finite number of
points. So, it contains a point b E Lo such that, in addition P1(x,b,zl) is of
positive degree in 71. So, if /3 is such that PI (O, b, c1) = 0 and P2(/3, b, C2) = 0, then
Q E Ll n L2i but /3 Lo, otherwise cl would be algebraically dependent over Lo.

We now prove the lemma from the fact. Let (al, a2, ... , a,,,,) and (bl, b2, ... , bn2 )
be transcendence bases of Kl and K2 respectively over Iio. We may assume that
bl, b2, , b,,,, are algebraic over Iio U {al, a2, ... , an, , bm+l, bm+2, ... , bn2 } . Now let
(ci, C2, ... , en2) be such that cm+1, cm+2, . . . , cn2 are algebraically independent over
acl(K1 U K2) and such that there exists an automorphism of L leaving Kl point-
wise fixed and mapping (bl, b2, ... , bn2) onto (Cl, c2, . , c , 2 ) .). Set K2 = acl (Ko U
{c1,c2,...,c,2}). Clearly Aut(L/Ii2) C (Aut(L/Kl) U Aut(L/K2)) and Ko = K2n
K K. So, we just have to prove that

(Aut(L/K2) U Aut(L/KZ)) = Aut(L/Ko).

Since K2 and K 2 are independent over K1, K2 n K2 c K1, so K2 n K2' = Ko.
Now, cl E acl(Ki U {cm+17 Cm+21 ..., Cn2}), C1 acl(Ko U {Cm+17 Cm+29 ... i Cn2})
and by the fact,

acl(Ki U {Cm+1,Cm+2, -, cJ) n acl(K2 U {Cm+l, em+2,..., cn2}) _
acl (Ko U {Cm+17 Cm+2, , Cn2 } )

Thus cl V acl(K2 U {Cm+i, Cm+2, , C"2}), and this proves that the transcendence
degree of acl(Ii2 U K2) is at least 2n2 - m + 1. Thus, we may apply the induction
hypothesis.
O
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Lemma 8 Assume that Ko, K, and A2 are elements of S2, that Ko = K 1 n K2 and
that K1 is of finite transcendence degree over Ko. Then

Aut(L/Ko) = (Aut(L/Kl) U Aut(L/K2)) .

Proof. We know that there exists K2 such that Ko C K2 C K2, K2 of
finite transcendence degree over Iio and K1 and K2 independent over K. By
Lemma 6, Aut(L/Ii2) C (Aut(L/Kl) U Aut(L/Ii2)) and by Lemma 7 we have
that Aut(L/Ko) C_ (Aut(L/K1) U Aut(L/K2)) .

O

Remark: If L is of uncountable transcendence degree, it is not true in general
that

(Aut(L/Kl) U Aut(L/Ii2)) = Aut(L/K1 n Ii2)

for arbitrary K1, K2 E S2. Indeed, an easy inductive argument shows that if each
of K1, K2 is of finite transcendence degree over the other then we have that g[K1]
is of finite transcendence degree over Kl for g E (Aut(L/Kl) U Aut(L/K2)). Now,
by Example 3.3 of [1], there exist K1, K2 E f2 of infinite transcendence degree, each
of transcendence degree 1 over the other, and such that Kl n K2 is algebraic. So
for these K1, K2 the above equality does not hold.

Lemma 9 Assume that Ii E S2, f E Aut(L) and that, for every a E L, f (a) is
algebraic over K(a). Then f is the identity on L.

[5].
0

Proof. This is an easy consequence of Lemma 2.5 of [2]. See also Lemma 2 of

Let H = {H < Aut(L) ; the index of H in Aut(L) is small} and for k E S2,
Aut(L/ {k}) the set of automorphisms which leave k fixed setwise. It is clear
that, for every k E S2, Aut(L/ {k}) E R.

The proof of Proposition 5 will be split into two cases, according whether the
transcendence degree of L is countable or uncountable.

The countable case.
In this case, !2 is just the set of subfields of L of finite transcendence degree.

Let Ko be the algebraic closure in L of the prime subfield. Let

H1 = {Aut(L/ {k}) ; k E Q}.

If H E H we know by Theorem 2 and Lemma 7 that there exists a unique minimal
k E c such that Aut(L/k) C H. In fact, k= n{k' E 52; Aut(L/k') C H}. We will
call this subfield k the support of H and denote it by o(H).

We claim that for every H E H which does not contain Aut(L/Ko), there exists
H1 E H1 \ Aut(L) such that H C H1: it suffices to take H1 = Aut(L/ {o(H)}).
Obviously, if k and k' are distinct elements of S2 and k' 54 Ko then Aut(L/ {k}) 2r
Aut(L/ {k'}).
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Lemma 10 Let H E 7-l, k E S2, k1 = a(H) and assume that H C Aut(L/ {k}).
Then

kl = k if and only if n g-'Hg # {e} .
gEAut(L/{k})

Proof. If we assume that a(H) = k, then Aut(L/k) C H, and, for every
g E Aut(L/ {k}), Aut(L/k) = g-1.Aut(L/k).g g g-1Hg, so

Aut(L/k) C n g-'Hg.
gEAut(L/{k})

Conversely, suppose that k1 # k. Since Aut(Llki) C H C Aut(L/ {k}), we see
that k C k1. We conclude the proof of the lemma by showing that, under these
conditions,

n g-1.Aut(L/ {kl}).g = {e}
gEAut(L/{k})

or, equivalently
n Aut(L/ {g [k1]}) = {e} .

gEAut(L/{k})

So, let f E ngEAut(L/{k}) Aut(L/ {g [k1]}). Let (al, a2,..., an) be a transcen-
dence basis of k1 over k and k2 be the algebraic closure of k(al, a2.... an-,). We
claim that for every b E L, f (b) is algebraic over k2(b). This is trivial if b E k2, for
there exists g E Aut(L/{k}) such that g[kl] fl k1 = k2 so f stabilises k2. If b k2

then there exists g E Aut(L/ {k}) such that g(ai) = ai for i = 1,2,..., n - 1 and
g(an) = b. Thus g [k1] is equal to k3, the algebraic closure of k(ala2 ... a,-, b), and
since f [k3] = k3, f (b) is algebraic over k2(b). By Lemma 9, this implies that f is
the identity.
Q

Note in particular this implies that H E 1-l does not contain Aut(L/Ko) if and
only if

I IgEAut(L) g-'Hg = {e}, that is, H is core-free. Moreover, if H E l does
not contain Aut(L/Ko) then H < Aut(L/{a(H)}) < Aut(L). So f1 \ Aut(L) is
the set of core-free maximal elements of W. Consequently, it is left fixed by any
a E Aut(Aut(L)).

We are now done: Let

F = {(H, Aut(L/ {k}) ; H E 1-l, k E S2, H C Aut(L/ {k}), a(H) = k} .

Then (by Lemma 10) this family F is left fixed by any a in Aut(Aut(L)), and the
same is true for the class

n H ; H1 E 1-(1
(H,Hi)E

and since, for H1 = Aut(L/ {k}) E Ri, f(H,H,)E.rH = Aut(L/k), we see that this
last class is exactly equal to {Aut(L/k) ; k E Q}.
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The uncountable case
We recall that we have assumed that card(L) = A+ = 2A. Let

1-12 = {Aut(L/K) ; K is an algebraically closed subfield of L and card(K) = A}.

Lemma 11 1-12 is the unique subset of 11 (the class of subgroups of Aut(L) of
small index) satisfying the 3 following conditions:

1. 1-12 is the conjugacy class of one of its elements;

2. 'H2 is closed under countable decreasing intersections;

3. If H E If, then there exists H' E 1-12 such that H' C H.

Proof. First, we see that 1-12 satisfies the 3 properties: the first one comes
from the fact that, for every two algebraically closed subfields Kl and K2 of L of
cardinality A, there exist an automorphism of L mapping Kl onto K2. The second
follows from the fact that, if K is an algebraically closed subfield of L of cardinality
AforiEwandAut(L/Ii°)>Aut(L/K')>...,then K°CK1 C...and

n Aut(L/Ki) = Aut(L/ U Ki)
iEw iEw

The third comes from the small index property (Theorem 2).
Assume now that K C 1-1 satisfies the three conditions above. We want to prove

that K = 1-12. Because of condition 1, its suffices to prove that K and 1-12 intersect.
Using condition 3, one can construct inductively subgroups Hi and K' for i E w
such that the Hi belong to 1{2 and the Ki belong to K and H° D KO D HI D Kl J

3 Hi 3 Ki 3 .... Then, by condition 2

nHi=nK'E71f1K.
iEw iEw

Q

It follows that 1-12 is left fixed by any a E Aut(Aut(L)). To conclude the proof
of Proposition 5, we have to show the same property for the class

1-13 = {Aut(L/k) ; k is an algebraically closed subfield of L
of finite transcendence degree} .

This will be an immediate consequence of the above lemma and of the following
lemma:

Lemma 12 Let H E 1{. Then H E x3 if and only if the following two conditions
are satisfied:

1. If X is a subset of 1-12 which is downward directed, of cardinality at most A
and such that h x C H, then there exists Hl E X such that Hl C H.
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2. H=(U{H1iH1Ef2 and H1CH}).

(Remark: we say that X, a subset of 1-12, is downard directed if the intersection of
any two elements of X contains an element of X. Since any element of X is of the
form Aut(L/K) for some algebraically closed subfied of L, this means that the set
K = {K; Aut(L/K) E X} is upward directed, that is, the union of two elements
of K is contained in an element of K.)

Proof. Assume that H E 9-13. The second condition follows from Lemma
6. Suppose now that X is as in condition (1). Let k be the algebraically closed
field of finite transcendence degree such that H = Aut(L/k). The hypothesis of
condition (1) tells us that fX C Aut(L/k), and this implies that k C acl((JK).
So, because the family K is upward directed, this implies that k is included in one
of the elements of K, thus there exists an element H1 of X included in H.

Conversely, assume that H E 1-1 and that the two conditions are satisfied. By the
small index property, we know that there exists K° E S2 such that Aut(L/K°) C H.
Let jai; i E p} (p a cardinal not bigger than .\) be a transcendence basis of K°
and let K1 be an algebraically closed subfield of L of transcendence degree .A and
independent from K°. Set

X = {Aut(L/acl(K1 U jai; i E s}) ; s is a finite subset of p}

Then the hypotheses of condition (1) are satisfied, so, for some finite subset s of
p, Aut(L/acl(Ii 1 U jai; i E S})) C H. But we know that Aut(L/K°) C H, and
that K° and ael(K1 U jai; i E s}) are independent over acl(ai; i E s). Thus, by
Lemma 6, Aut(L/acl(ai; i E s)) C_ H. By Lemma 8, there exists an algebraically
closed subfield k of L of finite transcendence degree, such that, for every K E S2,
Aut(L/Ii) C H if and only if k C K. But in this case Aut(L/K) C Aut(L/k) so
by condition (2) we get H = Aut(L/k). C7

3 Proof of Theorem 1
Let T be the lattice of algebraically closed subfields of L of finite transcendence
degree. Let a E Aut(Aut(L)). Then Proposition 5 allows us to define a map 'Ya from
T into itself by: for every k E T, a [Aut(L/k)] = Aut(L/ ' (k)). Obviously, this
map is bijective (because is the inverse mapping), and is a lattice isomorphism.
So, it maps elements of G (which are minimal elements of T) into elements of G. We
will also denote by Yea the restriction of c, to G. It is easy to see that 0a E Aut(f )
and that the map 0 from Aut(Aut(L)) into Aut(G) defined by 0(a) = 7ba is a group
homomorphism.

Lemma 13 The map 1/i is injective.

Proof. Let a E Aut(Aut(L)), and assume that 0. is the identity on G (that is,
for all k E G, a [Aut(L/k)] = Aut(L/k)). We have to prove that a is the identity
on Aut(L).
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For all g E Aut(L) and k E G, we have: a [Aut(L/g [k])] = Aut(L/g [k]). But
Aut(Llg [k]) = g Aut(L/k) g-1, so that the above identity yields:

Aut(L/g [k]) = a [gAut(L/k)g-1] = o(g) a [Aut(L/k)] a(g-1) _
a(g) Aut(L/k) a(g)-1 = Aut(L/a(g) [k])

and it follows that g [k] = a(g) [k] and that g-1 a(g) [k] = k. This means exactly
that cp(g-1 a(g)) is the identity on G, and by Theorem 4, g-1 a(g) is the identity
on L and so a is the identity on Aut(L).
O

We have already a homomorphism cp from Aut(L) into Aut(G) and a homomor-
phism * from Aut(Aut(L)) into Aut(G). Call 7 the homomorphism from Aut(L)
into Aut(Aut(L)), defined by: for all g E Aut(L), 7(g)(f) = g f g-1 (that is, 7(g)
is conjugation by g).

Lemma 14 The diagram

Aut(L) - Aut(G)
17 /

Aut(Aut(L))

commutes.

Proof. This is more or less evident: let g E Aut(L). Then for all k E G
b(7(g))(k) is the element k' of G such that:

Aut(L/k') = 7(g) [Aut(L/k)] = g Aut(L/k) g-1 = Aut(L/g [k]),

so that b(7(g))(k) = g [k] = V(g)(k)
O

We are now ready to finish the proof of Theorem 1. The map c is surjective,
so 0 is also surjective. Thus by Lemma 13 0 is a bijection. Then by Lemma 14,
7 = 0-1 cp is surjective, which is what we need.

4 Generalisations

A more general version of Theorem 1 is:

Theorem 15 Assume that L is an algebraically closed field, either countable of
infinite transcendence degree, or of cardinality 2' = A+ for some infinite cardinal
A. Let Iio be an algebraically closed subfield of L such that the transcendence rank
of L over Iio is equal to the cardinality of L. Then the group Aut(L/{Ko}) is
complete.

We indicate how to modify the proof of Theorem 1 to give this. First, assume
that the characteristic of L is p # 0 and 1( is the algebraic closure of the prime



124 D. M. Evans, D. Lascar

subfield. Theorem 3 remains true, as do the results on the small index property
which we used and the basic algebraic lemmas 6, 7 and 8. The main difference lies
in Theorem 4. In this case, V is a surjective homomorphism, whose kernel is the
set of Frobenius automorphisms,

where f,, is the automorphism of L which maps any x E L to xp In Lemma 10
the conclusion should be modified to

kl = k if and only if n g-'Hg g ,D.
gEAut(L/{k})

Thus the only difficulty is encountered in the proof of Lemma 13: if a E I(er(O),
then for every g E Aut(L), there exists n E Z (call it n(g)) such that a(g) = g- fn(g),
and it is easy to see that the map g H n(g) (call it n) is a group homomorphism from
Aut(L) into Z. The kernel of n being of countable index, there exists a subfield k of
L of small transcendence degree such that Aut(L/k) C Ker(n), and since Ker(n)
is normal in Aut(L), it is easy to see that Aut(L/Ko) C Ber(n).

We can then factorise n

Aut(L) T__
n

+ Z
Tr /no

Aut(Ko)

where r is the restriction map: r(g) = g I Ko.
So, to prove that 0 is injective, it suffices to prove that n is trivial (that is that

Ker(n) = Aut(L)), or equivalently that no is trivial. But we know exactly what is
Aut(Ko): it is (isomorphic to) Z, the profinite completion of Z and we will finish
the proof by proving that there is no non-trivial homomorphism from Z to Z.

Indeed, Z is isomorphic to 11 prime Zq where Zq denotes the group of q-adic
integers. Let P1 and P2 be a partition of the set of prime numbers into two infinite
sets. Then Z = 11gpi Zq X rjgEP2 Zq. Let a E rfgEp, Zq. Then a is divisible by any
prime number in P2, and so is h(a), if h is any homomorphism from Z to Z, and
thus h(a) = 0. Similarly if a E rfgEp2 Zq.

Now for the generalisation to working over an arbitrary subfield Ko as in The-
orem 15. The proof is about the same, we just have to use the full strength of
Theorem A of [2] in place of Theorem 3, and results in [3] and [4] give us the small
index properties we require. We always work with subfields of L containing Ko
and work with transcendence rank over Ko.

As a final remark, we sketch an alternative approach to the uncountable case
of Theorem 1 (and Theorem 15) which uses the full strength of Theorem A of
[2], but avoids Lemmas 7 and 8. Let a E Aut(Aut(L)). Then a preserves 112 as
before, and without loss we may assume that a stabilises some Aut(L/I(°) E 112.
So a acts on no = {K E 11; K > I(°} preserving the geometry. By Theorem
A of [2] there exists g E Aut(L/{K°}) such that for all K E f10, 3 = 'Y(g)-la



The automorphism group of C is complete 125

stabilises Aut(L/K). An argument as in Lemma 13 (supplemented by the argument
from above in the non-zero characteristic case) shows that ,6 fixes every element of
Aut(L/{K°}). Then one notes that if H, H' E W2 are not contained in Aut(L/K°)
then H fl Aut(L/{Ii °}) = H' fl Aut(L/{K°}) if and only if H = H. Thus /3
stabilises every H E f2 and so (by Lemma 6) stabilises every Aut(L/{K}), for
K E Q. It follows that Q is the identity, that is, a = y(g).
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The algebra of an age

Peter J. Cameron

Abstract
Associated with any oligomorphic permutation group G, there is a graded

algebra AG such that the dimension of its nth homogeneous component is
equal to the number of G-orbits on n-sets. I show that the algebra is a poly-
nomial algebra (free commutative associative algebra) in some cases, and pose
some questions about transitive extensions.

1 The algebra
Let fl be an infinite set. Let (n) denote the set of n-element subsets of 1, Vn the
vector space of functions from (") to Q. Set A = (Dn>O V,,, with multiplication
defined as follows: for f E Vn, g E Vn,,, and X E Q)

(fg)(X) = f(Y)g(X \ Y).
YE(n)

This is the reduced incidence algebra of the poset of finite subsets of 12 (Rota [13]).
It is a commutative and associative algebra with identity, but is far from an integral
domain: any function with finite support is nilpotent.

Now, if G is any permutation group on Sl, let AG = ®n>O V,G, where V,G
consists of the functions in V. which are G-invariant (where G acts on Vn in the
natural way: f9(X) = f(Xg-1)). Now a function in Vn is fixed by G if and only if
it is constant on the G-orbits. So, if G is oligomorphic (that is, G has only finitely
many orbits on n-sets for all n), then dim(V,G) = fn(G) is the number of orbits of
G on (n).

If G has a finite orbit, then AG contains non-zero nilpotents. I conjecture
that conversely, if G has no finite orbits, then AG is an integral domain. This
question arose originally in studying the rate of growth of the numbers fn(G)
for oligomorphic groups. The only evidence for it, apart from the fact that no
counterexamples are known, is the following observation. Let f E Vn and g E Vm
be such that fg # 0. Let X and Y be sets in the support of f and g respectively.
By the Separation Lemma (Neumann [10], Lemma 2.3), if G has no finite orbits,
then there is a translate Y' of Y such that X fl Y' = 0. Now we have a non-zero
contribution to (fg)(X U Y'), though this may be cancelled out by other terms in
the sum.

There is a stronger form of the conjecture, as follows. Let e be the constant
function in V1 with value 1. It is known that e is a non-zero-divisor in A, and lies

126
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in AG for any group G. (This implies that multiplication by e is a monomorphism
from V,G to VG 1i and hence that f,,+1(G) > for any n: see Cameron [1].) I
conjecture that, if G has no finite orbits, then e is prime in AG, in the sense that
if el fg then elf or e1g. This would imply that AG is an integral domain.

There is a combinatorial version of this algebra, defined as follows. Let C be
a class of finite relational structures closed under isomorphism and under taking
induced substructures. Let V,,(C) be the vector space of functions from the iso-
morphism types of n-element structures in C to Q, and A(C) = V, (C), with
multiplication defined just as before.

The age of a relational structure M on ) is the class of all finite structures em-
beddable in M as induced substructures. M is homogeneous if every isomorphism
between finite induced substructures of M extends to an automorphism of M. Now
we have:

If C is the age of a relational structure M on Sl, then A(C) is a subalgebra of
the reduced incidence algebra A on fI (and this is equivalent to C having the
joint embedding property, that is, any two members of C can be simultaneously
embedded in a member of C).

If C is the age of a homogeneous relational structure M on 52, then A(C) = AG,
where G = Aut(M) (and this is equivalent to C having the amalgamation
property, that is, any amalgam of two members of C with a common sub-
structure can be embedded in a member of C).

See, for example, Cameron [3] for discussion.

2 Polynomial algebras

There are only two techniques I know for determining the structure of the algebras
AG or A(C). The first is based on the simple observation that, regarding G x H as
a permutation group on the disjoint union of the sets on which G and H act, we
have

AGXH = AG ®Q AH

Let S denote the symmetric group on an infinite set. Then As is a polynomial ring
in one variable (generated by the element e). Hence As" is a polynomial algebra
in n variables.

Now let H be a finite permutation group of degree n. Then the wreath product
SWrH is the semidirect product of S" by H, and so AswTH consists of the invariants
of H in the polynomial algebra (in the classical sense, where H acts as a linear
group by permutation matrices). For example, if H is the symmetric group Sn,
then Aswrs" is the polynomial algebra generated by the n elementary symmetric
functions, by Newton's Theorem. (Note that AswwH is always an integral domain,
but almost never a polynomial algebra.)
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In this case, the numbers fn(S Wr H) can be calculated by Molien's Theorem,
which turns out to be a special case of a "cycle index theory" for oligomorphic
permutation groups (see [3]).

The second approach requires that the class C has a "good notion of connected-
ness", as follows. I will give an axiomatic treatment, since in one of the examples
below, words like "connected" and "involvement" have meanings quite different
from their usual ones. We require

a distinguished subclass of C consisting of "connected" structures;

a partial order < called "involvement" on the class of n-element structures
for each n;

a binary, commutative and associative "composition" o such that, if X and
Y are structures with n and m points respectively, then X o Y is a structure
with n + m points.

Assume that the following conditions hold:

Al Let S be a structure which is partitioned into disjoint induced substructures
S1, S2,. .. . Then S1 o S2 o ... < S.

A2 Any structure has a unique representation as a composition of connected
structures.

Theorem 2.1 If all the above conditions hold, then A(C) is a polynomial algebra,
generated by the characteristic functions of the connected structures.

Proof. If ISI = n, then S is a disjoint union S1 U S2 U ... of connected structures;
so we have a bijection between characteristic functions Xs (the basis elements of
V"(C)) and monomials Os = Xs, Xs2 of total weight n. Consider the matrix
expressing the monomials cbs in terms of the basis elements Xs'. The coefficient of
Xs in the row corresponding to cbs is non-zero. Suppose that Xs' also has non-zero
coefficient. Then S' can be partitioned into induced substructures isomorphic to
S1, S2, ...; so S = Sl o S2 o ... < S'. Thus the matrix is upper triangular with
non-zero diagonal, and hence invertible. So the monomials of weight n form a basis
for V",(C), and the theorem is proved.

Example 1. Let M be the countable "random graph" [4], whose age C is the class
of all finite graphs. Let "connected" have its usual meaning, "involvement" mean
"spanning subgraph", and "composition" be disjoint union (with no edges between
the parts). Then Al and A2 hold, and so A(C) = AAut(M) is a polynomial algebra,
whose generators correspond to the finite connected graphs.

This method works for many other ages, both of homogeneous structures (for
example, the class of K",-free graphs for fixed n [8]), and not (for example, bipartite
graphs, N-free graphs [5]).
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Example 2. Let C be the age of a homogeneous structure M, and let G = Aut(M).
Let C' be the class of structures over a language with the relation symbols for C
and one new binary symbol E, in which E is an equivalence relation each of whose
classes carries a C-structure (with no instances of relations holding between points
in different E-classes). Then C' is the age of a homogeneous structure consisting
of the disjoint union of countably many copies of M, with automorphism group
GWrS, where S is the symmetric group of countable degree. Now let "connected"
mean "only one E-class", "involvement" mean "inclusion of all relations", and
"composition" mean "disjoint union". Then Al and A2 hold.

The conclusion is that AGWES is always a polynomial algebra; the number of
generators of degree n is equal to the number of orbits of G on n-sets.

Example 3. Let A be a fixed alphabet of finite size q, and let C = A* be the set of
words in A. (Here a word of length n is regarded as an n-set carrying a total order
and q unary relations R1, . . ., Rq, where each element of the set satisfies exactly one
of the unary relations; the word ala2 ... aq corresponds to the n-set {x1, ..., xn},
with x1 < x2 < ... < xn and in which xi satisfies Rai.) The algebra A(A*) is
the shuffle algebra which arises in the theory of free Lie algebras [12]. The name
comes from the fact that the product of two words is the sum of all words which
can be obtained by "shuffling" them together, with appropriate multiplicities. For
example,

(aab) (ab) = abaab + 3aabab + 6aaabb.

Also, A* is the age of a homogeneous relational structure M(q) which is order-
isomorphic to Q and in which the set of elements satisfying each relation Ri is
dense; in other words, a partition of Q into q dense subsets. Such a partition is
unique up to order-isomorphism of Q. Let G(q) = Aut(M(q)).

Take a total order on A, and define the lexicographic order on A* in the usual
way: that is, a1 ... a,,,. < b1 ... bn if and only if either

m<n,andai=bifori=l,...,m;or

for some 1 < min{m, n}, we have ai = bi for i = 1, ... ,1, and a1+1 < b1+1.

A non-empty word w E A* is a Lyndon word if, whenever w = xy with x, y
non-empty, we have w < y; that is, w is less than any proper cyclic shift of
itself. The number of Lyndon words of length n is (1/n) EdIn µ(d)gnld, where
µ is the Mobius function. (This well-known number counts several other things,
for example, irreducible polynomials over 1Fq if q is a prime power; see [12].) The
following combinatorial properties hold for Lyndon words:

Lemma 2.2 (i) Any word w has a unique expression in the form w = w1w2...,
where w1, W2.... are Lyndon words with w1 > w2 > ....

(ii) Given Lyndon words w1, W2.... with w1 > w2 > ..., the lexicographically
greatest shuffle of these words is the concatenation w1w2....
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Hence, if we let "connected" mean "Lyndon word", "involvement" mean "lex-
icographic order reversed", and "composition" mean "concatenation in decreasing
lexicographic order", then Al and A2 hold, and we conclude that A(A*) = AG(9)
is a polynomial algebra generated by the Lyndon words (a result of Radford [11]).

3 Transitive extensions
Not much is known in general about how the algebra AG is affected by group-
theoretic or model-theoretic constructions (direct products with product action,
wreath products, covers and quotients, etc.). This section contains some comments
about transitive extensions.

The permutation group H on 52 is a transitive extension of G if H is transitive
and the stabiliser Ha of the point a, acting on 52 \ {a}, is isomorphic to G as
permutation group. Note that, in this situation, H is closed if and only if G is
closed.

A general question: Let H be a transitive extension of G. What is the relation
between AH and AG 9

We can regard the group induced on 52 by G as the direct product of G (in its
given action) with the trivial group of degree 1. For the latter group (K, say), the
algebra Ah is generated by an element k of degree 1 with k2 = 0. In other words,
AI' = T(Q), the algebra of 2 x 2 upper triangular matrices with constant diagonal
over Q. Hence, using G+ for the group induced on 52 by G, we have

AG+ = AG ®Q T(Q) = T(AG).

However, we can only say that, since G+ < H, the algebra AH is a subalgebra
of T(AG). This does not seem to help to decide, for example, whether AH is an
integral domain.

There is a special class of transitive extensions for which a- bit more can be
said. We say that the transitive extension H of G is curious if H has a transitive
subgroup (on the whole of 52) which is isomorphic to G. In the case where G and
H are closed, this means that H is a reduct of G. If H is a curious transitive
extension of G, then AH is a subalgebra of AG; in particular, AH is an integral
domain if AG is. Perhaps it is possible to weave together the embeddings of AH in
AG and in T(AG) to get better information.

Example 1 (continued). A two-graph on 52 is a set T of 3-element subsets of 52 such
that any 4-subset contains an even number of members of T (Seidel [14]).

Given a graph r on 52, let T(r) be the set of odd triples of r (those containing
an odd number of edges). Then T(F) is a two-graph on Q. Every two-graph arises
in this way.

Let R be the random graph on 520. Take a new point oo, and define T to be
the two-graph on 52 = 52o U {oo} derived from R (with oo as an isolated vertex).
Then Aut(T) is a transitive extension of Aut(R). Moreover, it is curious; for the
two-graph derived from R without an isolated vertex is clearly a reduct of R, and
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is isomorphic to T. (In fact, T is the unique countable universal homogeneous
two-graph.) See Thomas [16].
Problem. Is AAnt(T) a polynomial algebra?
Remark. Mallows and Sloane [9] showed that the numbers of two-graphs and even
graphs (graphs with all valencies even) on n points are equal. Hence, if AAUt(T) is
a polynomial algebra, then its generators are in one-to-one correspondence (pre-
serving degree) with the finite Eulerian graphs (the connected even graphs).

Example 3 (continued). Let G(q) be as in Example 3 in the preceding section.
Then G(q) has a transitive extension H(q) defined as follows.

On the set of complex roots of unity, put z1 z2 if z2z1 1 is a qth root of unity.
Let ft be a dense subset containing exactly one member of each equivalence class of
this relation. (Such a set is unique up to permutation preserving the cyclic order.
If we choose a random member of each class, the resulting set almost surely has
this property.) Now define binary relations R1, R2,. . ., Rq by (zl, z2) E Rj if and
only if

2gr(q 1)
< arg(z2z1 1) <

27rj

The structure N(q) consists of the circular order and the relations R1, R2i ..., R.
It is l' o-categorical. Note that, if z1 # z2, then (z1, z2) E R, for a unique value of
j; and the converse of R; is Rq+1_j. Let H(q) = Aut(N(q)).

Now take z E Q. Define a map 0 : Sl \ {z} -> (0,1) by letting O(w) be the
fractional part of arg(zw-1). Then q5(fl \ {z}) _ (0,1) fl Q. If we give ¢(w) the
colour j if (z, w) E Rj, then each colour class is dense. Moreover, the structure
N(q) can be recovered uniquely from this information. So H(q) is a transitive
extension of G(q).

This extension is also curious. If we repeat the above construction, but with z
a point on the unit circle which is not a root of unity, we obtain a bijection from
all of S1 to a countable dense subset of (0, 1) partitioned into q dense subsets.
Problem. Is AH(gl a polynomial algebra?
Remark. For q = 2, the relations R1 and R2 are a converse pair of tournaments, each
of which is isomorphic to the countable universal homogeneous local order [2], locally
transitive tournament [7], or vortex-free tournament [6]: these are three alternative
names for a tournament having no subtournament consisting of a directed 3-cycle
dominating or dominated by a vertex. This structure is further discussed in the
lectures of Evans, Ivanov and Macpherson.

Orbits of H(q) on n-sets are parametrised by two-way infinite "shift register
sequences" (xi) with elements in {1, ..., q} satisfying xi + n - xi + 1 (mod q) for
all i. For q = 2, the sequences counting these orbits is listed as M0324 in the
Encyclopedia of Integer Sequences [15], where further references can be found.

On the assumption that AH(2) is a polynomial algebra, it is possible to compute
the numbers of generators of each degree. The resulting sequence appears to be
"unknown"; in particular, it is not in the Encyclopedia [15].

The group H(2) does not have a transitive extension. Nevertheless, the following
occurrence is suggestive.
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Knuth [6] defines a CC-structure to be a set with a ternary relation satisfying
five universal axioms, of which the first three assert that the induced structure on
any 3-set is a circular order. The letters CC stand for "counter-clockwise"; and,
given a set St of points in the Euclidean plane with no three collinear, the relation
R such that Ra,3y holds if and only if the points a, /3, y occur in the counter-
clockwise sense, is a CC-structure. Such a CC-structure is called representable.
There is a countable universal representable CC-structure, defined by choosing a
countable dense set of points in the Euclidean plane with no three collinear. It
is not homogeneous; indeed, the class of CC-structures (or of representable CC-
structures) does not have the amalgamation property.

Given a ternary relation R on f2 whose restriction to any 3-set is a circular
order, there is a derived tournament Ra on fl \ {a} defined by Ra/37 #? Ra13ry.
Knuth's fifth axiom for CC-structures implies that Ra is a local order for any point
a. Indeed, if we take the universal representable CC-structure above, and project
S1 \ {a} radially onto the unit circle with centre a, we obtain the homogeneous
local order N(2).
Problem. Do there exist countable CC-structures (or representable ones) with large
automorphism groups, or with other nice model-theoretic properties?

Acknowledgment. I am grateful to It. A. Bailey, R. M. Bryant and D. G. Fon-Der-
Flaass for their help with the contents of this paper.
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Elimination of inverses in groups

Maurice Boffa

1 Terminology

I say that a group G satisfies a formula yo(x) (with free variables x) if it satisfies
the sentence Vxcp(x). In this case, I simply write G I-- So(x) instead of G k `dxcp(x).
An identity is a non-trivial atomic formula of the language of groups L9 = J-1 1 ,1},
i.e. one which can be put (using group axioms) in the form t(x) = 1 where t(x) is
a non-trivial element of the free group on Y.
A monoidal identity is a non-trivial atomic formula of the language of monoids
L,,,, = i.e. one of the form a(x) _ 3(x) where a(x) and 3(7) are distinct
elements of the free monoid on x.

2 Two facts and an open question

Fact 1. If a group satisfies an identity (resp. a monoidal identity), then it satisfies
an identity (resp. a monoidal identity) in 2 variables.

It suffices to replace each variable xi by yixy-i (resp. xyi).

Fact 2. If a group satisfies a finite disjunction of identities, then it satisfies an
identity.

It suffices to show that if t1(x) = 1 and t2(x) = 1 are identities, then there is an
identity t3(x) = 1 such that any group satisfies

(t1(x) = 1 V t2(x) = 1) -+ t3(x) = 1.

If t1(x) and t2(x) don't commute in the free group on x, then we take t3(x) =
[t1(x), t2(x)]; if they commute, then they are powers of a common element, i.e.
t1(x) = u(x)n' and t2(x) = U(x)n2, and we take t3(x) = u(x)nhn2

As we shall see later, the following question (formulated in [1], [11]) has a positive
answer for several classes of groups, but remains open in its full generality :

(Q) If a group satisfies a finite disjunction of monoidal identities, does it satisfy a
monoidal identity ?

134
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3 Model theoretic characterization of groups satisfy-
ing an identity

Let * denote the ultrapower construction modulo a (fixed) nonprincipal ultrafilter
over w. I refer the reader not versed in logic to the Handbook of Mathematical
Logic (edited by J. Barwise, North-Holland, 1977) for the model-theoretic notions
which I require, in particular for ultrapowers.

Theorem 1 ([8]). For a group G, the following are equivalent

(1) G satisfies an identity.

(2) G* has no free subgroup of rank 2.

(1) -- (2) is obvious; the converse holds since (2) means that G* satisfies the
(countably infinite) disjunction of all identities in 2 variables, thus (since G* is
wl-saturated) that G satisfies a finite disjunction of such identities, and (by Fact 2)
this implies (1).

Corollary 1. For a commutative field K, the following are equivalent

(1) SL2(K) satisfies an identity.

(2) K is finite.

This holds since (SL2(K))* is canonically isomorphic to SL2(K*) and since, for
K infinite, K* contains two algebraically independent elements (over the prime
subfield), so that (by exercise 2.2 of [14]) SL2(K*) has a free subgroup of rank 2.

Example. Let K be the algebraic closure of a finite field. Then SL2(K) is an
example of group which satisfies no identity and which has no free subgroup of
rank 2. This shows that G* cannot be replaced by Gin condition (2) of Theorem 1.

Corollary 2. For a group G, the following are equivalent

(1) G satisfies an identity.

(2) GW has no free subgroup of rank 2.

(1) - (2) is obvious; the converse holds since (2) implies that G* (which is a
quotient of G`') has no free subgroup of rank 2.

Let ti(x, y) = 1 (i E w) enumerate all identities in 2 variables. The previous result
has a direct proof : if G satisfies no identity, then choose xi, yi E G such that
ti(xi, yi) $ 1, so that (xi), (yi) generate a free subgroup of G1. A similar argument
for monoidal identities gives

Theorem 2. For a group G, the following are equivalent :
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(1) G satisfies a monoidal identity.

(2) GW has no free submonoid of rank 2.

For finite disjunctions of monoidal identities, the line of proof of Theorem 1 gives

Theorem 3. For a group G, the following are equivalent

(1) G satisfies a finite disjunction of monoidal identities.

(2) G* has no free submonoid of rank 2.

From Theorems 2 and 3, we get a new formulation of question (Q)

IfGW has a free submonoid of rank 2, does G* also have a free submonoid of rank 2 ?

4 Elimination of inverses
Here is my terminology, where e.i. (resp. s.e.i.) means "elimination of inverses"
(resp. "strong elimination of inverses"). Given a group G and an atomic formula
cp(x) of L9, I will say that G has e.i. (resp. s.e.i.) for So(x) if there is an open
(resp. atomic) formula O(x) of Lm such that G k (yo(x) + 9(x)). Here, open means
quantifier-free.
Given a group G, I will say that G has e.i. (resp. s.e.i.) if it has e.i. (resp. s.e.i.)
for all atomic formulas of L9.

In other words :

G has e.i. if each open formula of L. is equivalent in G to
an open formula of Lm;

G has s.e.i. if each atomic formula of L. is equivalent in G to
an atomic formula of Lm.

These notions are closely linked to monoidal identities, as shown by the following
basic results :

Theorem 4 ([1]). For a group G, the following are equivalent

(1) G has e.i. for the formula x-1y = y-1z.

(2) G satisfies a finite disjunction of monoidal identities (in 2 variables).

(3) G has e.i.

Theorem 5. For a group G, the following are equivalent

(1) G has s.e.i. for the formula x-1y = y-1z.

(2) G satisfies a monoidal identity (in 2 variables).



Elimination of Inverses 137

(3) G has s.e.i.

We first consider Theorem 5.
(1) -+ (2), since if x-1y = y-1z is equivalent in G to an atomic formula O(x,y,z)
of Lm then :

either 9 is trivial and then G satisfies the monoidal identity x = 1,

or 9 is non-trivial and then G satisfies the monoidal identity 9(x, xy, xy2).
(2) , (3), since in a group any monoidal identity in 2 variables can be put in the
form y(x, y)x = 6(x, y)y, that is xy-1 = y(x, y)-16(x, y), which allows to put each
term t(x) of L9 in the form y(x)-16(x) where 7(x) and 6(x) are terms of L,,,,.

Theorem 4 has a more complicated proof. Here is a sketch (see [1] for details).
(1) -+ (2), since if x-ly = y'1z is equivalent in G to a boolean combination of
monoidal identities ai(x, y, z) = Oi(x, y, z) then G satisfies the disjunction of the
following monoidal identities :

y = 1, ai(x, xy, xy2) = 0,(X, xy, xy2), ai(x, xy, xy) = /,(x, xy, xy)

(2) -+ (3), since (2) implies that in G each term t(x) of Ly can be in some sense
locally written in the form y(x)-1b(x) with y(x) and 6(x) in Lm.

Corollary. e.i. and s.e.i. are preserved with respect to forming subgroups, homo-
morphic images, finite extensions, and finite products. Moreover, s.e.i. is preserved
with respect to forming arbitrary powers.

This is obvious except for the case of finite products, which can be obtained from
the fact that a finite product of groups which have no free submonoid of rank 2
has itself no free submonoid of rank 2 (see [9], proposition 4.21).

Our question (Q) has now two new formulations :

If a group has e.i., does it have s.e.i. ?
Is e.i. preserved with respect to forming arbitrary powers ?

Remark. Since two elements of a free group either are free or commute, we see
that a free group has s.e.i. for any atomic formula of L9 in 2 variables. This explains
why we need more than 2 variables in the formula of condition (1) of Theorems 4
and 5.

For nEw, let In (x, y) denote the monoidal identity defined inductively as follows :
Io(x, y) is x = y and In+1(x, y) is In(xy, yx). These monoidal identities were first
considered by A.I. Shirshov [12] under the name of v-identities, and rediscovered
in [3] under the name of Thue-Morse identities.

Theorem 6. Any nilpotent group of class < n satisfies In(x, y). Consequently,
any nilpotent group has s.e.i..
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The proof (by induction on n) results from the following facts (where Z denotes
the centre of G) :

(i) if In is a = 3, then I i is a/3 = 0a,

(ii) if G/Z k (a = /3), then G k (a8 = pa).

Example. Let us show how a nilpotent group G of class <, 2 has s.e.i. for the
formula x-1y = y-1z. Since G satisfies I2(x, y), i.e. xyyx = yxxy, i.e. x-1y =
yyx(xxy)-1, we get (in G) :

x-1y = y-lz E-", yyyx = zxxy.

5 Linear groups with elimination of inverses
By definition a linear group (over a commutative field K) is a subgroup of GL,(K)
for some positive integer n. Each linear group G carries the topology induced by
the Zariski topology of Knz, which is noetherian (i.e. satisfies the descending chain
condition for closed sets), and the following holds (for details see [14], ch.5 and
14) :

(i) G has only finitely many connected components and these are also its irre-
ducible components;

(ii) the identity component G° is a closed normal subgroup of finite index in G;

(iii) the connected components of G are exactly the cosets of G° in G.

As mentioned in [1], J. Tits has pointed out to me that the irreducibility of G° x G°
(= (G x G)°) entails the following result :

Theorem 7. Question (Q) has a positive answer for linear groups.

Indeed, if a linear group G satisfies a finite disjunction of monoidal identities
ai(x, y) = /3i(x, y), then G° x G° is the (finite) unions of the closed subsets

{(x, y) E G° x G° ai(x, y) = l3i(x, y)}

and its irreducibility shows that G° (ai(x, y) = /3i(x, y)) for some i, so that
G k (ai(xm, y'n) = /3i(x'n, ym)) where mn is the index of G° in G.

A stronger result is the following definite characterization of linear groups with
e.i. .

Theorem 8 ([2]). For a linear group G, the following are equivalent

(1) G has e.i..
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(2) G is nilpotent-by-finite (equivalently : G° is nilpotent).

Here is the line of proof :

(a) A linear group with e.i. is soluble-by-finite.
This follows from a result of Platonov (see 10.15 of [14]) : a linear group
which satisfies an identity is soluble-by-finite.

(b) A finitely generated linear group with e.i. is nilpotent-by-finite.
This follows from (a) and a result of Rosenblatt [9] : a finitely generated
soluble group which has no free submonoid of rank 2 is nilpotent-by-finite.

(c) A linear group G with e.i. is nilpotent-by-periodic.
Indeed, G is a subgroup of some GL,,,(K) and (b) implies that H° is nilpotent
(of class necessarily < n) for any finitely generated subgroup H of G. It
follows that lim (H°) is a nilpotent normal subgroup N of G such that GIN
is periodic.

(d) A connected linear group G with e.i. is nilpotent.
Indeed, G is a subgroup of some GLn(K) and we may assume that K is an
algebraically closed field. Its Zariski closure G in GLT(K) is then a connected
linear algebraic group. Since G satisfies the same identities as G (see 10.7 of
[14]), it follows from (a) and (c) that G is soluble and nilpotent-by-periodic.
From the structure of the connected soluble linear algebraic groups (see 14.22
of [14]) it follows finally that G is nilpotent-by-a periodic torus.
But we may assume that K contains a transcendental element, in which case
a periodic torus is necessarily trivial.

Corollary 1 (for n > 2). For a subgroup G of GLn(K) the following are equiva-
lent :

(1) G has e.i..

(2) G satisfies the monoidal identity I,,-, (x-, y-) where m is the index of G°
in G.

This follows from Theorem 6 and the fact that (for n > 2) a connected nilpotent
subgroup of GLn(K) is of class < n - 1.

Corollary 2. For a simple linear group G, the following are equivalent

(1) G has e.i..

(2) G is finite.

Application. In [6] it is shown that if a cancellative linear semigroup satisfies
an identity then it has a group of fractions which is linear and satisfies the same
identity, so that Theorem 8 can be generalized as follows : a cancellative linear
semigroup satisfies an identity if it has a group of fractions which is nilpotent-by-
finite.
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6 Soluble groups with elimination of inverses
Rosenblatt's result used in the proof of Theorem 8 immediately gives

Theorem 9. For a finitely generated soluble group G, the following are equivalent

(1) G has e.i..

(2) G is nilpotent-by-finite.

We cannot expect the same result for all soluble groups, since the soluble group
(S3)W (where S3 is the symmetric group of degree 3) has e.i. (it satisfies x6 = 1)
but is not nilpotent-by-finite.

But, according to [4], there is for each n, m an open formula (x, y) of L9 which
expresses that the group generated by x, y has a nilpotent normal subgroup of class

n and index < m. And (by Theorem 9) a soluble group with e.i. (as well as
its elementary extensions) satisfies the (countably infinite) disjunction of all these
formulas and so (by compactness) it satisfies one of them. So we get :

Theorem 10 ([7]). For a soluble group G, the following are equivalent

(1) G has e.i..

(2) For some n, m : G satisfies 9n,,n(x, y), i.e. each 2-generated subgroup of G
has a nilpotent normal subgroup of class < n and index < m.

Note that on,,n(x, y) implies In(xk, yk) where k is the lowest common multiple of
1,2,...,m.

Corollary 1. For a soluble group G, the following are equivalent

(1) G has e.i..

(2) G satisfies the monoidal identity In(xk, yk) for some n, k.

Corollary 2. Question (Q) has a positive answer for soluble groups.

7 Bounded elimination of inverses
This notion was first investigated by Point [7] and later by Shalev [11] (in terms of
collapsing groups introduced in [10]).

Definitions ([7]).

(i) A monoidal identity (in 2 variables) a(x, y) = /3(x, y) is in normal form of
length .f if a, p have the same length P and if they differ in their first letter
as well as in their last letter.
For example, I,, (x, y) is in normal form of length 2n.
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(ii) A group has e.i. of complexity < f if it satisfies a finite disjunction of monoidal
identities in normal form of length < f.

(iii) A group G has the f-Milnor property if for all x, yin G the subgroup generated
by {yixy i E Z} is already generated by {yixy_i 1 < i < f} (this will be
called the f-Milnor condition on x, y).

Remarks.

(i) From the cancellation law of groups and the fact that a = 0 - 8 = Oct it
follows that any monoidal identity entails one which is in normal form. This
implies that a group has e.i. if it has e.i. of complexity < f for some f.

(ii) The following fact has its origins in [5] and [9] : if a(x, y) = l3(x, y) is in
normal form of length f, then a(xy, y) = /3(xy, y) implies the (f - 1)-Milnor
condition on x, y. The proof consists in expressing a(xy, y) = /3(xy, y) in
terms of elements of {yixy-i I i E Z}.

Example. xxyx = yxxy is in normal form of length 4. If we replace x by xy we
get xyxyyxy = yxyxyy, i.e. x(yxy-1)(y3xy-3) = (yxy-1)(y2xy-2), which implies

the 3-Milnor condition on x, y.

From Remark (ii) we get

Theorem 11 ([7]). A group with e.i. of complexity < f has the (f - 1)-Milnor
property.

This result (together with some ingredients of the theory of finite groups, including
the classification of finite simple groups) has led to

Theorem 12 ([7]). There is a function e(f) such that every finite group G with e.i.
of complexity < f has a nilpotent normal subgroup N such that GIN has exponent
< e(t).

And Zelmanov's solution to the restricted Burnside problem (see [13] for details)
immediately gives :

Corollary. There is a function m(r, f) such that every r-generated finite group
with e.i. of complexity < f has a nilpotent normal subgroup of index < m(r, f).

But the strongest result in this direction is the following reformulation of theorem
A'of[11]:

Theorem 13 ([11]). There are functions n(r, f) and m(r, f) such that every r-
generated residually finite group with e.i. of complexity < f has a nilpotent normal
subgroup of class < n(r,f) and index < m(r,t).
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For n(f) = n(2, f) and k(f) = the least common multiple of 1, 2, ... , m(2, f) we get

Corollary 1. Every residually finite group with e.i. of complexity 5 f satisfies
Inltl(xkh>, yk(e)).

Corollary 2. Question (Q) has a positive answer for residually finite groups.

Final remarks.
(i) Since finitely generated nilpotent-by-finite groups are residually finite, we can

replace in Theorem 13 "residually finite" by any property X such that every
finitely generated X-group with e.i. is nilpotent-by-finite (for example, X =
linear or soluble). If moreover X is inherited by subgroups, then this can also
be done in Corollaries 1 and 2.

(ii) There are finitely generated groups with e.i. (and even s.e.i.) which are not
nilpotent-by-finite (for example, the infinite Burnside groups).
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Model theoretic properties
of polycyclic-by-finite groups

Francis Oger

If R is a (possibly noncommutative) ring, then, by [P, Corollary 2.18, p. 37],
any R-module M is characterized up to elementary equivalence by the invari-
ants fl b(M))I E {1, 2,..., oo}, where cp and 0 are positive primi-
tive formulas with one free variable. Some algebraic invariants which characterize
abelian groups up to elementary equivalence, and which can be written in the form
Jcp(M)/(cp(M) n i(M))I, had been previously given by W. Szmielew and by P.C.
Eklof and E.R. Fisher (see [EF]). The two following consequences are easily proved:
1) Two abelian groups, or two modules, M, N, are elementarily equivalent if and
only if they satisfy the same sentences with one alternation of quantifiers.
2) For each integer n > 2, two abelian groups, or two modules, M, N, are elemen-
tarily equivalent if and only if the direct product of n copies of M and the direct
product of n copies of N are elementarily equivalent.

For nonabelian groups in general, it is not possible to obtain such a charac-
terization of elementary equivalence, since S. Burris proved in [Bu] that, for each
integer n, there exist two soluble groups which satisfy the same sentences with n
alternations of quantifiers without being elementarily equivalent. Concerning 2),
L. Manevitz proposes the following problem in [Mn, p. 9]:

Conjecture. For each integer n > 2, two groups M, N are elementarily equivalent
if and only if the direct product of n copies of M and the direct product of n copies
of N are elementarily equivalent.

This problem may be considered for any sort of structure. The "only if" part
is always true. In [Mn], L. Manevitz mentions that the two following structures
M, N are not elementarily equivalent, though M x M and N x N are isomorphic:
M is the set N with the map n -> n + 1, and N is the disjoint union of two copies
of M. The conjecture is also believed to be false for groups in general.

We are going to see that, in some classes of groups, it is possible to obtain
algebraic characterizations of elementary equivalence which can be expressed with
one or two alternations of quantifiers. We shall use these characterizations in order
to prove that the conjecture is true for the groups that we consider.

First, we give a few definitions and notations. The finite images of a group G
are the finite groups H such that there exists a surjective homomorphism from G to
H. For each group G and for each integer n, we denote by G' the subgroup which
is generated by the n-th powers of elements of G, and x"G the direct product of
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n copies of G. For any properties P, Q defined in the class of groups, a group G is
P-by-Q if there exists a normal subgroup H of G which satisfies P and such that
G/H satisfies Q. The definitions and results of group theory which are used here
can be found in [S]. Concerning model theory, the reader is referred to [CK].

In our proofs, and especially for the conjecture, we use some results concerning
the cancellation properties and the decompositions of a group in direct products
of indecomposable groups. The first results were proved by It. Hirshon in [H] and
other papers. Later on, some generalizations and other results were obtained in
(08].

Any group can be decomposed into a finite direct product of indecomposable
groups if and only if it satisfies the maximal condition on direct factors. This
condition is satisfied, for instance, by polycyclic-by-finite groups, and in particular
by finitely generated finite-by-nilpotent groups, since they satisfy the maximal
condition on subgroups. On the other hand, J.M.T. Jones proved in [J] that, for
each integer n > 3, there exists a nontrivial finitely generated group G which
satisfies G^_' x72GandGZ xkG for 2 < k < n - 1.

The decomposition is unique for finite groups; this is the Remak-Krull- Schmidt
property. On the other hand, R. Hirshon and other authors gave examples of
finitely generated abelian-by-finite groups or finitely generated nilpotent groups
which satisfy Z x G = Z x H, or x'G = x'H for an integer n > 2, without being
isomorphic. Moreover, in [Ba], G. Baumslag constructed, for any integers m, n > 2,
a finitely generated nilpotent group which has a decomposition with m factors and
a decomposition with n factors.

In [08], we introduce a slightly different notion of decomposition. We say that a
group G is Z-indecomposable if it is not isomorphic to xkZ for an integer k > 1 and
if, for each integer n > 1, (xnZ) x G = A x B implies that A or B is isomorphic to
xkZ for some integer k > 1. We say that two groups G, H are Z-equivalent, and we
write G ^ Z H, if there exist two integers m, n such that (xInZ) x G = (xnZ) x H.
In that case, we necessarily have Z x G = Z x H, or (xkZ) x G = H for an integer
k> 1,orG(xkZ)xHforaninteger k> 1.

The Z-decompositions of a group G are the relations G zt;Z Al x ... x An with
A1, ..., A,,,. Z-indecomposable. We identify two Z-decompositions G ^ Z AI x ... x A,n
and G ::Z Bl x ... x Bn if m = n and if there exists a permutation a of { 1, ..., n}
such that Az Bo(;) for each i E {1, ..., n}. The following result generalizes the
Remak-Krull-Schmidt property for finite groups:

Theorem 1 [08, Prop. 1, p. 1999 and Th., p. 2001]. Any group G which satisfies
the property P below has one and only one Z-decomposition:
(P) G/[G,G] is finitely generated and G satisfies the maximal condition on direct
factors.

The two first propositions below, as well as the second part of the third one,
are consequences of this result:

Proposition 1 [08, Cor. 3, p. 2005]. Any P-group only has finitely many decom-
positions in direct products of indecomposable groups.
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Proposition 2 [08, Cor. 1, p. 2002]. For each P-group U and for any groups
G, H, UxG=UxH implies Z x G =Z x H.
Proposition 3. Let G and Hbe groups. Then:
1) [H, Th. 1, p. 135] If Z x G = Z x H, then there exists an integer n > 1 such
that xnG = xnH.
2) [08, Cor. 2, p. 2003] The converse is true if G satisfies P.

By considering ultrapowers, we see that, for each integer n > 2, the statement
of the conjecture is equivalent to the following one:
For any groups G, H, if x'G and xnH are isomorphic, then G and H are elemen-
tarily equivalent.
According to Proposition 3 above and Proposition 4 below, the last statement is
true if G satisfies P.

Proposition 4 [05]. Any groups G, H such that Z x G = Z x H are elementarily
equivalent.

Many reasons make it natural to search for an algebraic characterization of
elementary equivalence for polycyclic-by-finite groups. If G is such a group, then
we have flk>1 Gk = 1, and G/Gk is finite for each integer k > 1. Two polycyclic-by-
finite groups G, H have the same finite images if and only if they satisfy G/Gk
H/Hk for each integer k > 1.

Two finitely generated abelian groups which have the same finite images are
isomorphic. On the other hand, various authors gave examples of nonisomorphic
poly cyclic-by-fini te groups, in particular finitely generated abelian-by-finite groups
and finitely generated nilpotent groups, which have the same finite images. How-
ever, F.J. Grunewald, P.F. Pickel and D. Segal proved that any class of polycyclic-
by-finite groups which have the same finite images is a finite union of isomorphism
classes (see [S, Chap. 10]).

For each polycyclic-by-finite group G and for each integer n, GI is definable in
G, since there exists an integer r(n) such that each element of GI is a product of
r(n) n-th powers. It follows that two elementarily equivalent polycyclic-by-finite
groups necessarily have the same finite images (see [02, pp. 470, 475]).

In [R], D. Raphael obtains a stronger result:
If G and H are polycyclic-by-finite groups which satisfy the same sentences with
one alternation of quantifiers, then, for each integer m > 1, there exists a subgroup
H,,,, of G with Jim = H and IG : H,,,,I prime to m, and a subgroup Gm of H with
Gm = G and IH : GmI prime to m.
The conclusion implies that G and H have the same finite images.

The following result implies that two finitely generated abelian-by-finite groups
are elementarily equivalent if they satisfy the same sentences with one alternation
of quantifiers:

Theorem 2 [04, Corollary, p. 1042]. Two finitely generated abelian-by-finite
groups are elementarily equivalent if and only if they have the same finite images.

It follows that the conjecture is true for finitely generated abelian-by-finite
groups. For any two such groups G, H, and for each integer n > 1, if xnG and



Polycyclic-by-finite groups 147

x'H are elementarily equivalent, then, for each integer k > 1, (xnG)/(x"G)k
xn(G/Gk) and (xnH)/(xnH)k - xn(H/Hk) are isomorphic; the last property
implies G/Gk = H/Hk, because the finite group Xn(G/Gk) - xn(H/Hk) has a
unique decomposition in direct product of indecomposable groups. Consequently,
G and H are elementarily equivalent.

Theorem 2 cannot be generalized to polycyclic-by-finite groups. For instance, by
[01] and [R], there exist examples G, H of finitely generated torsion-free nilpotent
groups of class 2 such that:
1) G and H do not satisfy the same sentences with one alternation of quantifiers.
2) For each integer m > 1, there exists a subgroup H and
JG : Hml prime to m, and a subgroup Gm of H with Gm - G and IH : GmI prime
to M.

Anyhow, the following result gives a characterization of elementary equivalence
for finitely generated nilpotent groups; a sketch of the proof will be given after
some remarks.

Theorem 3 [06], [09]. If G and H are finitely generated finite-by-nilpotent groups,
then the following properties are equivalent:
1) G and H are elementarily equivalent;
2) G and H satisfy the same sentences with two alternations of quantifiers;
3)ZxG-ZxH.
Remark. In [07] and [09], we obtain similar results for the following classes of
structures, where n > 2 is an integer:
a) the (n + 2)-tuples (Al, ..., An+i, f ), with Al, ..., An+1 finitely generated abelian
groups and f : Ai x ... x A. - An+, n-linear;
b) the triples (A, B, f ), with A, B finitely generated abelian and f : xnA -> B
n-linear (in particular integral quadratic forms);
c) the pairs (A, f ), with A finitely generated abelian and f : xnA -+ A n-linear (in
particular finitely generated Lie rings).

Theorem 3, in conjunction with Proposition 3, implies the conjecture for finitely
generated finite-by-nilpotent groups: If two finitely generated finite-by-nilpotent
groups G, H satisfy xnG = xnH for an integer n > 1, then we have Z x (xnG)
Z x (xnH), and there exists an integer k > 1 such that xk(xnG) xnkG and
xk(xnH) = xnkH are isomorphic. Consequently, we have Z x G = Z x H and
G=H.

Theorem 3, as well as Theorem 2, cannot be generalized to polycyclic-by-finite
groups. We can see it by considering the semi-direct products G = I k and
H = J >o (l;p), where p is a prime number, (lp) is the cyclic group of order p
generated by a primitive p-th root p of 1 in C, and I, J are nontrivial ideals of
Z[lp], with lp acting on I and J by multiplication.

The groups G, H were introduced by D.S. Warhurst in [W, pp. 33-34]. They
are extensions of a finitely generated torsion-free abelian group by a cyclic group
of order p. For each integer k > 1, we have G/Gk - H/Hk, because I/kI and
J/kJ are isomorphic as Z[ep]-modules. Consequently, G and H are elementarily
equivalent by Theorem 1.
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Now, let us suppose that I is a principal ideal and J is a nonprincipal ideal (J
exists for p large enough). Then, G can be generated by 2 elements, while H can
only be generated by 3 elements. G and H cannot satisfy Z x G= Z x H since
they are nonisomorphic and Z(G) = Z(H) = 1.

Proof of Theorem 3 (sketch). As 3) implies 1) by Proposition 4, we just have to
show that 2) implies 3). We prove that the following property is a consequence of
2):
4) For each integer m > 1, there exists a subgroup H,,,, of G with H,n = H,
[G, G] C H,n and IG : HmI prime to m, and a subgroup G,n of H with G,n = G,
[H, H] C G,n and IH : GmI prime to m.
For a suitable choice of m, 4) implies A x G - A x H for a finitely generated abelian
group A, and therefore Z x G - Z x H according to Proposition 2.

In order to prove that 2) implies 4), we use arguments which are essentially
similar to those of [03, pp. 63-67] and [R]. Here, the key point is to show that, for
each integer m > 1 and for each finite sequence x which generates G, there exists
a V3 formula p(u) such that: 1) G satisfies o(x); 2) for each finitely generated
finite-by-nilpotent group H and for each finite sequence y C H, if H satisfies cp(y),
then we have [H, H] C (p).

For each group M, we consider the subgroups Fi(M) with F1(M) = M and
Fi+1(M) = [M, ri(m)] for i > 1. For each integer i > 1, the map M x M -
M : (x, y) --> [x, y] induces a bilinear map from (M/[M, M]) x (ri(M)/ri+1(M))
to Fi+1(M)/ri+2(M). Moreover, if M is finitely generated finite-by-nilpotent,
then, for each integer i > 1, there exists an integer r(i) > 1 such that each el-
ement of Fi+1(M) can be written as [x1, y1]...[xr(i), yr(i)] with x1, ..., xr(i) E M and
y1, ... yr(i) E ri(m). Consequently, the subgroups ri(M) for i > 1 are defined by
existential formulas, and this fact can be expressed by a unique V3 sentence since
only finitely many of them are distinct.

There exist an integer c > 1 such that F,+1(G) is finite and, for each i C-

... I c -1}, some sequences of terms oi(l), ri(u) such that the following properties
are satisfied by x in G:
M = (oi(u), {z e M I [z, ri(M)] c ri}2(M)}) and Fi(M) = (r,(u), {z E M
[M, z] c r2}2(M)}).
It follows from the lemma below that these two properties can be expressed by
a V3 formula. If this formula is satisfied by y in H, then we have Fi+1(H) =
([oi(y), ri(y)], Fi+2(H))

Moreover, there exists a finite sequence of terms r(u) such that r,+1(G) =
rr(x). The property r,+1(M) = rr(u) can also be expressed by a `d3 formula. But
the property rc}1(H) = r(y) and the properties Fi+1(H) ri+2(H))
for 1<i<c-limply [H,H]C(V).

Lemma. For each quadruple A = (A1i A2, A3, f) with Al, A2, A3 finitely gen-
erated abelian groups and f : Al x A2 -+ A3 bilinear, there exist a V3 formula
cp(fil,'a2i iii) and some sequences xl C A1, x2 C A2, x3 C A3 such that: 1) A
satisfies cp(21, x2, ,t3); 2) for each quadruple B = (BI, B2i B3, g) and for any se-
quences 91 C B1, 92 C B2, 93 C B3, if B satisfies cp(yi, 92, 93), then B1 is generated
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by yl and kerl(g) _ {yl E Bl I g(y1i B2) = 0}, while B2 is generated by 92 and
ker2(9) = {y2 E B2 g(Bi, y2) = 0}.

Remark. The lemma can be generalized to the (n+2)-tuples (Al, ..., An+1, f) with
n > 2, Al, ..., A,+1 finitely generated abelian groups and f : Al x ... x A,,, ->
n-linear.

Remark. The property 2) of the lemma implies that g(Bj, B2) is generated by
g(yi, 92). When we prove that 2) implies 4) in Theorem 3, we use this fact, and
also a careful analysis of the complexity of the formula cp which is constructed in
the proof of the lemma.

Proof of the lemma (sketch). We construct the formula cp in two steps:
First, we consider an integer m > 2 and, for each i E {1, 2, 31, a sequence xi =

(xi,l, ..., xi,,,,,(i)) which generates A, and a sequence of variables ui = (ui,1,..., ui,m(i)).
We construct a V3 formula X(iil, u2i u3) such that: 1) A satisfies X(xl, x2i x3); 2)
for each quadruple B = (B1, B2, B3, g) and for any sequences yl C B1, 92 C B2,
93 C B3i if B satisfies X(yl, 92, 93), then there exists an injective homomorphism
0 = (01i 92, 03) : A - B such that, for each i E {1, 2, 3}, 9i(xi) = pi and IBi/9i(Ai)I
is prime to m.

Then, we show that, for a suitable choice of m, there exists a V3 formula
b(il, 52) such that:
1) A satisfies O(xl, x2);
2) for each quadruple B = (B1, B2, B3, g) with A C B and B, /A,, B2/A2 finite, if
B satisfies 1/i(x1ix2), then, for each i E {1,2}, IBi/(Ai,keri(g))j divides m.

For this integer m, we consider the formula

P(ul a u2, u3) = X(ul, 52, ii3) A 'fk(ul, u2),

which is satisfied by (xl, x2, x3) in A. For each quadruple B = (B1, B2i B3, g) and
for any sequences yl C B1, y2 C B2, y3 C B3, if B satisfies 0(91, 92, 93), then there
exists an injective homomorphism 0 = (01,92,93) : A -> B such that, for each
i E {1, 2, 3}, 9i(xi) = yi and IBi/9i(Ai)I is prime to m. For each i E {1, 2}, we have
Bi = (9i(Ai), keri(g)) = (yi, keri(g)) since jBi/(9i(Ai), keri(g))j is prime to m and
divides m.

If X exists for an integer m, then it exists for each integer which divides m.
So, we can suppose that m is divisible by the cardinals of the torsion subgroups
t(A1), t(A2), t(A3). The formula X says that (91, 92, y3) satisfies an appropriate
finite set of relations, which define a "presentation" of A on (.t1, x2, x3), and that
Bi = (yi, mBi) and JBi/mB1j = jAi/mA1j for each i E {1, 2, 3}. The first part
implies that there exists a homomorphism 9 = (91, 92, 93) : A ---> B such that
9i(xi) = 9i for each i E {1, 2, 3}. It follows from the second part that, for each
i E 11, 2,3}, IBi/9i(Ai)I is prime to m; then, 9i is injective since mt(Ai) = 0.

Now, we come to the construction of 0. We can suppose f nondegenerate,
since there are some universal formulas which define kerl(g) and ker2(g) for each
quadruple B = (Bl, B2i B3, g).

For the remainder of the proof, we proceed as follows: we consider some prop-
erties of (A, xl, x2) which can be expressed by a unique b'3 formula, and we restrict
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ourselves to quadruples B containing A, with BI/AI and B2/A2 finite, such that
(B, 2I, x2) satisfies this formula. At the end, we obtain a bound on IBI/AII and
IB2/A2I which only depends on A, and we denote by z'(ui, u2) the conjunction of
the formulas which have been considered.

As Al and A2 are generated by 21 and 22, A satisfies (Vv2)(f (21i v2) = 0 -+
v2 = 0) A (`dv1)(f (v1, x2) = 0 v1 = 0). We can suppose that B also satisfies this
formula.

We denote by SB the set of all pairs (01,92) E End(BI) x End(B2) such that
9(BI(yi),Y2) = 9(yi, 02(Y2)) for any elements y1 E BI and Y2 E B2, with the product
(91, 92)(9i, 02) = (0' 01, 929'2). We have (aIds aIdB2) E SB for each a E Z. (SB, +)
is a finitely generated abelian group and (SB, +,.) is a not necessarily commutative
ring.

Any element (01,92) E SB is completely determined by 91(x1) and 02(x2)
if 02(x2) = 0, then, for each z1 E B1, we have g(91(zI),x2) = g(z1,02(x2)) _
g(z1,0) = 0, and therefore 91(z1) = 0; similarly, we have 92(x2) = 0 for z2 E B2 if
91(2i) = 0.

Now write x = (21i x2) and identify each 9 E SB with 0(2) = (91(x1), 92(x2)).
There exists a quantifier-free formula which defines the pairs 9 = (y1i 92) E SA in
(A, x). We can suppose that the same formula defines the pairs 9 E SB in (B, 2).

As (SA, +) is finitely generated, there exist sequences of terms p1(u), ..., pP(u)
such that any element of SA which commutes with p1(2),..., pP(2) is in the center
RA of SA. Consequently, there exists a quantifier-free formula which defines the
center RA of SA, and we can suppose that the same formula defines the center
RB of SB. As AI and A2 are generated by 21 and 12 as RA-modules, we can also
suppose that BI and B2 are generated by 21 and x2 as RB-modules.

Moreover, there exist some prime ideals PI, ..., PS of RA such that P1...P3 =
0, and, for each i E III ..., s}, some sequences of terms oi'1(u),..., ai,t(=)(u) such
that P2 = oi'1(2)RA + ... + o',t(')(2)RA. We assume RA/P1i..., RA/Pt infinite
and finite for an integer t < s. We can suppose that the
ideals Qi = o''I(x)RB + ... + o''t(=)(2)RB are prime, and satisfy QI...QS = 0 and
IRB/QiI =IRA/Pilfort+1<i<s.

For each i E we write Ri = RA/Pi and Si = RB/Qi. We have a
canonical injection 4Pi : Ri = RA/(Qi n RA) = (RA + Qi)/Qi C Si. As B1 /A1 and
B2/A2 are finite, RB/RA is also finite, and the same property is true for SilRi.
Moreover, Ri and Si are subrings of the ring of integers of an extension of finite
degree of Q, since they are integral domains, and (Ri, +) and (Si, +) are finitely
generated torsion-free abelian groups. Consequently, Si is contained in the integral
closure Ri of Ri, and we have ISi/RiI < IRi/RiI.

From this, we deduce some bounds which only depend on A, for IRB/RAI, and
also for IBI/AI I and IB2/A2I since we have Ai = RA2i and Bi = RBxi for i = 1, 2.

Remark. As early as 1959, A.I. Mal'cev used a correspondence between rings and
groups in order to prove some results concerning the model-theoretic properties
of a class of nilpotent groups (see [Ml, Chap. 15, pp. 124-137]). In [GS, p.
172], F.J. Griinewald and R. Scharlau also constructed rings from the nilpotent
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groups that they considered; the idea was suggested to them by J. Tits. Later on,
A.I. Myasnikov also considered rings associated to multilinear maps and nilpotent
groups.

Problem 1. Can two finitely generated nilpotent groups satisfy the same sentences
with one alternation of quantifiers without being elementarily equivalent?

Problem 2. Is there an integer n such that two polycyclic-by-finite groups (respec-
tively two finitely generated soluble groups, two finitely generated groups) which
satisfy the same sentences with n alternations of quantifiers are elementarily equiv-
alent?
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Non-standard Free Groups

I. M. Chiswell

1. Denote by Lo the first-order language of groups, {.,_1 , 1}, and for every cardinal
r let Fr denote the free group of rank r. It is well-known that, for any cardinals
r, s greater than 1, Fr and F3 have the same universal theory. This is because the
free group of countably infinite rank embeds in the free group of rank 2, so if r,
s < w, Fr embeds in Fs, while if w < r < s, then F, is an elementary substructure
of F3, by a theorem of Vaught (see Theorem 4, §38 in [16]). It follows that Fr, FS
have the same universal theory for all r, s > 1 using Lemma 3.7 in [5]. We denote
by the set of all universal and existential sentences true in the non-abelian free
groups, so that a group G has the same universal theory as the non-abelian free
groups if and only if G = t. We shall also use the following simple remark.
Remark. If A and B are structures for a first-order language L and B has the
same universal theory as A, then there is an index set I and an ultrafilter V on I
such that B is a substructure of the ultraproduct AI /D. If A is a substructure of
B, then A and B have the same universal theory in L if and only if B is embeddable
in some ultraproduct AI /D.

For the first part, see [5; Ch. 9, Lemma 3.8]. If A C B C AI /D, it follows from
Lemma 3.7 in [5], and the fact that A and AI /D are elementarily equivalent (see
[5; Ch. 5, Lemma 2.3]), that A and B have the same universal theory.

During an investigation of the model theory of the non-abelian free groups,
Gaglione and Spellman [12] noticed a connection between the universal theory of
these groups and the fully residually free groups studied by B. Baumslag [3]. The
general use of the word "residually" in this context can be described as follows.
Let X be a class of structures for a first-order language and let n be a positive
integer. A structure A for the language is said to be n-residually X if, given
elements a1, ... , a,ti and b1, ... b. of A with ai # bi for 1 < i < n, there exists
B E X and an epimorphism 0: A -- B such that 0(ai) # 0(bi) for 1 < i < n. We
abbreviate 1-residually X to residually X, and A is said to be fully residually X if
it is n-residually X for all n > 1. We shall only be using two cases. One is where
the language is Lo, and A and all members of X are groups. In this case we may
take all the bi in the definition to be equal to 1. The other is where the language
is the first-order language of rings, {+, -, , 07 11, which we denote by L1. Again if
A and all members of X are rings, we may take all bi to be zero in the definition.

The following theorem lists some results on residually free groups which are
relevant to what follows. Before stating it, a definition is needed. We call a group
G commutative transitive if given a, b, c E G such that [a, b] = 1, [b, c] = 1 and
b # 1, then [a, c] = 1. Equivalently, centralisers of non-identity elements of G are
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abelian. Note that the property of being commutative transitive can be expressed
by a universal sentence in Lo, and since free groups are commutative transitive,
models of t are commutative transitive. Also, the property of being non-abelian
can be expressed by an existential sentence in Lo, so models of 4' are non-abelian.

Theorem 1.1.

(i) A residually free group is fully residually free if and only if it is commutative
transitive.

(ii) A group is fully residually free if and only if it is 2-residually free.

(iii) A two generator subgroup of a residually free group is either free of rank 2
or abelian.

(iv) If G = A * B is the free product of two non-trivial groups A and B, then G
is residually free if and only if A and B are both fully residually free.

Proof. For the proof of (i) see [3; Theorem 1]. It is easy to see that a 2-residually free
group is commutative transitive, and (ii) follows (this was noted by Remeslennikov
[21; Theorem 1]). Part (iii) is Lemma 1 of §4 in [4], and for (iv) see [3; Theorem
6].

It was shown by Gaglione and Spellman [12] that, if G is a non-abelian residually
free group, then G is fully residually free if and only if it is a model of 4'. (The
main point is that if G is non-abelian and fully residually free then G = 4'. The
converse follows from Theorem 1.1(i) and the remarks preceding Theorem 1.1).
Remeslennikov [21] showed that a finitely generated group is a model of 4) if and
only if it is non-abelian and fully residually free. It was observed by the author
[8] that this can be easily improved, to show that a group is a model of 4' if and
only if it is non-abelian and locally fully residually free. We present a detailed and
slightly simplified version of this in §2. (The class of fully residually free groups
is clearly subgroup closed, so locally fully residually free means that every finitely
generated subgroup is residually free).

Note that free abelian groups are fully residually infinite cyclic.To see this, it
suffices to observe that finitely generated free abelian groups are fully residually
infinite cyclic, by induction on the rank-it is easy to see directly that the free
abelian group of rank 2 is fully residually infinite cyclic. It follows that an abelian
group is fully residually free if and only if it is fully residually free abelian. Also,
it follows that an abe]ian group is locally fully residually free if and only if it is
torsion-free.

Models of 41 are of interest because of another fact noted by Gaglione and
Spellman [13], [14] (see also Remeslennikov [22]). They are examples of groups
which act freely on a A-tree, a generalisation of an ordinary tree introduced by
Morgan and Shalen [19], and extensively studied by Alperin and Bass [1]. In fact
the argument shows that any locally fully residually free group, abelian or not, acts
freely on a A-tree. This will be discussed in §3.
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Remeslennikov's result made use of rings which are fully residually Z as rings.
There are ring-theoretic analogues of some of the group theoretic results, and these
and other properties of residually Z rings have been considered by the author [9].
We shall give a brief account of some of these results in §4.

2. We shall prove the characterisation given in the introduction of groups with the
same universal theory as the non-abelian free groups. We do this by characterising
subgroups of ultrapowers of F2.

Lemma 2.1. Let G be a locally fully residually free group. Then G embeds in
some ultrapower of F2.

Proof. Let I be the set of all finite subsets of G. For E E I, let aE = {E' E I I E C
E'}. Then aE # 0 since E E aE, and if E, E' E I, then aEuEs S aE n aEl. Hence,
there is an ultrafilter D on I such that aE E V for all E E I.

For E E I, let GE denote the subgroup of G generated by E. Since all countable
free groups embed in F2, there is a group homomorphism ¢E : GE - F2 such that,
for all x E E \ {1}, OE(x) # 1. Extend 4'E to G by putting OE(x) = 1 for x 0 GE.
Now define 0 : G -> F2 /D by O(x) = (OE(x))EEI, where (¢E(x))EEI means the
equivalence class of (cE(x))EEI in F2 /D. If x, y E G then OE restricted to GE is
a group homomorphism for all E E a{x y}, and a{x y} E D. It follows that 4 is a
group homomorphism.

Suppose O (x) = 1; then OE(x) = 1 for almost all E, that is, for all E E A, where
A is some element of D. Then a{x} n A E D, so is non-empty. Take E E a{x} n A;
then OE(x) = 1 and x E E, so x = 1 by the definition of 4'E, hence ¢ is an
embedding.

The main point is that there is a converse to Lemma 2.1, that is, finitely gen-
erated subgroups of ultrapowers of F2 are fully residually free. This is due to
Remeslennikov [21], and we shall give his argument with trivial modifications. As
we indicated earlier, this depends on a result about fully residually Z rings. Fix
a set I and an ultrafilter D on I, and denote the ultrapower X I /D by *X. We
shall view *Z as an extension of the ring Z, and there is an obvious identification
of *SL2(Z) with SL2(*Z).

Lemma 2.2. Let R be a finitely generated subring of *Z. Then as a ring, R is
fully residually Z. That is, given n > 1 and x1i...,xn E R \ {0}, there is a ring
homomorphism 0: R -* Z such that ¢(x4) # 0 for 1 < i < n.

Proof. There is a short exact sequence

J'-' Z[yl,...,yk] 0R

where the y, are commuting indeterminates, and J is a finitely generated ideal.
Choose generators f1, ... , fm for J and gj E Z[y1 i ... , Yk] such that 9(g;) = xj for
1 < j < n. Denoting z1,. .. , zk by z, the sentence

3z1 ...3zk(fl (z) = 0 n ... A fm(z) = 0 A 1(91(z) = 0) A ... A -'(9n(z) _ 0))
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in Ll is then valid in *Z (assign 0(y3) to the variable zj), hence is valid in Z. Thus
there are integers u1i..., uk in Z such that fl (u) = = fm(u) = 0 and gn(u) # 0
for 1 < j < n. The mapping Z[yl, ..., Yk] -+ Z which sends yj to uj and is the
identity on Z induces a ring homomorphism <k: R - Z, with O(xj) = gn(u) # 0,
as required.

Let p be an odd positive prime in Z and let K = Ker(SL2(Z) -. SL2(Z/pZ)). It
is well-known that K is a free group. One way to see this is to note that SL2(Z) is
a free product of two cyclic groups of orders 4 and 6 amalgamating their subgroups
of order 2 (see [23; Ch.I, 4.2]). One can obtain explicit generators for the cyclic free
factors from the proof, and it is easily checked that K intersects these free factors,
and so all their conjugates, trivially. Hence K is free by the subgroup theorem for
amalgamated free products (see Ch. I, §4.3, Prop. 18 in [23]). It is easy to see that
K is non-abelian, so there is an embedding of F2 into K, and this has an extension
to an embedding of *F2 into *K.

Lemma 2.3. Let G be a finitely generated subgroup of *F2. Then G is fully
residually free.

Proof. By the above we may assume G C *K C SL2(*Z). Let {gl ...,gam} be a
set of generators for G, and for simplicity assume this set is closed under taking
inverses. We can write

gJ
1 + pat pb2

PCj 1 + pdi

where aj, b;, cj and d; are all in *Z. Let R be the subring of *Z generated by
{aj, b;, cj, d; 11 < j < n}. If g E G, an easy induction on the length of a word in
the gj representing g shows that we can write

g= (1+pa pb
PC 1 + pd

where a, b, c, d E R. In particular, G C SL2(R).
Suppose hl, . . . , hk are non-identity elements of G. If

7 J
_ all a12

hJ - J J
a21 a22

then by Lemma 2.2 there is a ring homomorphism 0: R - Z such that 0(ak1) # 0
whenever ak1 # 0 and '(aki) # 1 whenever ak1 # 1. Let : SL2(R) -> SL2(Z) be
the group homomorphism induced by 0. Then V'(hj) $ 1 for 1 < j < k and for
g E G written as above, we have

0(g) = 0 (1 + pa pb 1 = (1 + po(a) pO(b) 1 E K.
pc 1 + pd J p¢(c) 1 + po(d) )

Thus *JG maps G into K which is free.

Lemmas 2.2 and 2.3 establish our characterisation of subgroups of ultrapowers
of F2.
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Theorem 2.4. Let G be any group. Then G embeds in some ultrapower *F2 of
the free group of rank 2 if and only if G is locally fully residually free.

0

In the case of a finitely presented subgroup of *F2, there is a simpler proof of
Lemma 2.3, similar to the proof of Lemma 2.2. (See the proof of Theorem 6 in
[11]). This suggested the following question, which was recorded in [15].

Question. Is every finitely generated fully residually free group finitely presented?

We shall return to this question later. It is now easy to give a characterisation
of models of 4.

Theorem 2.5. Let G be any group. Then the following are equivalent.

(1) G is non-abelian and locally fully residually free.

(2) G is a model of the set of sentences 4).

Proof. Assume (1). By Theorem 1.1(iii), G contains a subgroup isomorphic to F2.
Thus by Theorem 2.4, F2 C G C F21/D for some ultrapower Flt/D. It follows
from the remark at the beginning of §1 that G has the same universal theory as
F2, so (2) holds. Conversely if (2) holds, then by the same remark, G embeds in
some ultrapower of F2, so by Theorem 2.4, G is locally fully residually free. As we
observed before Theorem 1.1, G is non-abelian.

Theorem 2.5 generalises the results that non-abelian fully residually free groups
are models of qt [12], and that non-abelian locally free groups are models of 't ([11],
after Question 3).

3. We begin by giving the definition of a A-tree. If A is a (totally) ordered abelian
group, written additively, a A-metric on a set X is a mapping d: X x X -> A
satisfying the usual axioms for a metric with values in K, and given such a metric
the pair (X, d) is called a A-metric space. The mapping A x A -* A given by
(a, b) -+ Ja - bl, where JxJ = max{x, -x}, makes A itself into a A-metric space.
A segment in an arbitrary A-metric space (X, d) is the image of an isometry a :
[a, b] -> X, where [a, b] = {x E A; a < x < b} (and a < b). The endpoints of the
segment are a(a) and a(b). A A-metric space (X, d) is geodesic if, for all x, y E X,
there is a segment in X with endpoints x and y.
Definition. A A-metric space (X, d) is a A-tree if

(a) it is geodesic

(b) the intersection of two segments with a common endpoint is a segment

(c) if two segments intersect in a single point, which is an endpoint of both, then
their union is a segment.

If X is the set of vertices of an ordinary tree and d is the path metric on X (d(x, y)
is the number of edges in the reduced path joining x and y), it is not difficult to
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see that (X, d) is a Z-tree, and all Z-trees arise this way (see Lemmas 1.8 and 1.9
in [8]). Thus A-trees can be viewed as generalisations of ordinary trees.

It is an easy consequence of Axiom (b) that given x, y in X, there is a unique
segment in X whose set of endpoints is {x, y}, which we denote by [x, y].

Suppose G is a group acting on a A-tree (X, d) as isometries. To each x E X
there is associated a "based length function" Lx : G - A given by Lx(g) = d(x, gx).
This satisfies the following axioms of Lyndon for a "length function" L G --+ A.

(1) L(1) = 0

(2) For all g E G, L(g) = L(g-1).

(3) For all g, h, k E G, (c(g, h) > c(h, k) implies c(h, k) = c(k, g)), where c(g, h)
is defined to be 2(L(g) + L(h) - L(g-lh)).

(4) For all g, h E G, c(g, h) E A.

Axiom (3) implies that, for all g, h, k E G, at least two of c(g, h), c(h, k), c(k, g)
are equal, with the third no smaller. In the case of the function Lx above, it follows
from Axiom (b) for a A-tree that [x, gx] n [x, hx] = [x, w] for some w E X, and it
is easily seen, using 2.11 in [1], that c(g, h) = d(x, w), which is why Lx satisfies (3)
and (4).

There is a classification of isometries of A-trees. If G is acting on the A-tree
(X, d) as isometries and g E G, there are three possibilities for g. Either g is elliptic
(i.e. has a fixed point), an inversion (g has no fixed point but g2 does have a fixed
point), or else it is hyperbolic. In the last case, g has an axis, i.e. there is a subtree
A9 of X which is isomorphic as a metric space to a subtree of A, on which the
action of g is equivalent to the restriction of a translation on A. We put 1(g) equal
to the amplitude of the translation. If g is not hyperbolic we put 1(g) = 0, to
obtain a function t : G --+ A. If g is not an inversion, we have 1(g) = minxEX Lx(g)
This is obvious if g is elliptic (the minimum is attained at any fixed point x of g),
and when g is hyperbolic, it can be shown that the minimum is attained precisely
at the points on the axis A9. (See [1], §6, for proofs of all these assertions). An
example of an inversion is an automorphism of an ordinary tree which interchanges
the endpoints of an edge. There is, so to speak, a "phantom" fixed point in the
middle of the edge, which is not part of the corresponding Z-tree. This partly
explains why we put $(g) = 0 when g is an inversion.

The function f is variously called the unbased length function, translation length
function or hyperbolic length function for the action of G on X. We have the
following connection with the based length functions.

Lemma 3.1. For any isometry g from X onto X and any x E X,

1(g) = max{Lx(g2) - L.(g), 0}.

Proof. See [1; 7.1(c)] 0
We call an action of a group G on a A-tree free if g acts as a hyperbolic isometry,

for all 1 # g E G. If A is an ordered abelian group, we call a group A-free if it
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has a free action on some A-tree, and a group is called tree-free if it is A-free for
some A. We note that Gaglione and Spellman ([13]) have shown that the class of
non-abelian tree-free groups is the model class M(O) of some set of sentences 0 in
the first-order language Lo of groups, and that 0 may be taken to be a set of 12
sentences.

We shall make use of the following result.

Theorem 3.2. Let G be a group and L : G -+ A a function satisfying Lyndon's
Axioms (1)-(4). Then there are a A-tree (X, d), an action of G on X and a point
x E X such that L = L.

Proof. See [1; 5.4].

If F is a free group, F acts on its Cayley graph, relative to some fixed basis, so
acts freely on the corresponding Z-tree (The action is just the regular action of F
on itself by left translation, so no non-identity element is elliptic or an inversion,
since F is torsion-free). Using the vertex 1 as basepoint, it is easy to see that the
corresponding Lyndon length function L = Ll is given by: L(u) is the length of
the reduced word on Xfl representing u, and c(u, v) is the length of the longest
common initial segment of the reduced words representing u and v. Since the action
is free, L(u2) > L(u) for all u E F \ {1} by Lemma 3.1.

Let I be an index set and let D be an ultrafilter on I. As before, if {Xi; i E I} is
a family of sets, we denote the equivalence class of an element (xi)iEI of 112E1 Xi in
the ultraproduct fiEI Xi/D by (xi)iEI. Also, if X is a set, we denote the ultrapower
XI/D by *X.

There is an extension of the length function L on the free group F to *L : *F
*Z , given by *L((ui)) = (L(ui)), and *L satisfies Lyndon's Axioms (1)-(4) (either
by a direct check, or by invoking Loss's Theorem). Further, *L(u2) > *L(u) for
all u E *F \ {1} . Therefore there is an action of *F on a *Z-tree by Theorem
3.2, and it is a free action by Lemma 3.1. Thus *F, and so all its subgroups, are
tree-free. Hence, using Theorem 2.4, we obtain the following result.

Theorem 3.3. Any locally fully residually free group is tree-free.

0

This is the argument used in [14]; there is also a more direct way of constructing
a tree on which *F acts freely, using the next theorem. Again let I be an index
set and let D be an ultrafilter on I. For every i E I let Gi be a group acting as
isometries on a Ai-tree (Xi, di), where Ai is an ordered abelian group. Put

G = MEI Gi/D, A = fuE1 Ai/D, X = 11iEI Xi/D

so that G is a group, A is an ordered abelian group and X is a A-metric space with
metric d = MEI di/D, that is,

d((xi)iEI, (yi)iEl) = (di(xi, Yi))iEI.

Further, the actions of Gi on Xi induce an action of G on X as isometries. Let 1i
denote the hyperbolic length function for the action of Gi on Xi.
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Theorem 3.4. In this situation, (X, d) is a A-tree, and if f is the hyperbolic length
function for the action of G on X, then I = fliEI ti/D. In particular, if Gi acts
freely on Xi for almost all i (i.e. the set of i for which Gi acts freely belongs to D),
then G acts freely on X.

Proof. See [7; Lemma 5]. 0
In another paper, Remeslennikov [22] has shown that if G is a finitely generated

fully residually free group, then G is A-free for some finitely generated ordered
abelian group A. This makes use of a construction in [19] of a A-tree on which the
group SL2(F) acts, where F is a field equipped with a valuation with value group
A. (See also Appendices A and B in [1]).

If A is a finitely generated ordered abelian group, it has a decomposition A =
Al ® ® Ak for some k > 0, where the ordering is the lexicographic ordering and
A1,... , Ak are of rank 1 (i.e. archimedean). We believe this observation is due
to Zaitseva [25]. Thus Ai is isomorphic to Zm, for some mi, and has the ordering
induced from some embedding of Z'' into the additive group of R.

This brings us to some recent developments, involving cases when all the mi
can be taken equal to 1. Let R be a ring; an R-group is a group G with a mapping
G x R - G, (g, r) H gr, satisfying the following, for all g, h E G and r, s E R.

(i) gl = g
(ii) g(r+s) = gigs

(iii) grs = (gr)$

(iv) g(hg)r = (gh)'g

This definition is due to Lyndon [17], who established a normal form for the free
R-group on a given set of generators in the case that R is a polynomial ring
Z[tl,... , t,,,] over Z. (The existence of free R-groups follows from general results in
universal algebra. See Cor. 2, §25 in [16]). We denote the free R-group on r gen-
erators by (Fr)R. Let D be a non-principal ultrafilter on w and let *F2 denote the
ultrapower F2 /D. In his M.Sc. thesis, Pfander has shown that (F2)z[t] embeds in
*F2, where Z[t] is the polynomial ring in one variable (see [20]; this article contains
a discussion of Lyndon's normal form for elements of (F2)ziti, which gives some
insight into the structure of this group). In fact, for every non-standard integer 77
in *Z, there is an embedding p,, : Z[t] -> *Z and, using Lyndon's normal form,
a corresponding embedding of groups (F2)Zit] *F2. Further, the Lyndon
length function *L corresponding to the length function L : F2 -* Z given by a
basis of F2 (see the discussion after Theorem 3.2), when restricted to
takes values in p,(Z[t]), an isomorphic copy of Z[t].

Now if G is a finitely generated subgroup of p,,((F2)z1t1), Pfander further shows
that there is some integer m such that, for all g E G, *L(g) is a polynomial of degree
at most m - 1, so that *L maps G into some subgroup of *Z which is isomorphic to
Zm = Z ® ... ® Z with the lexicographic ordering. (This follows because p,,(t) is a
non-standard integer). Using results of Bass [2; 3.5] concerning actions on A-trees,
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together with an inductive argument, one can deduce that G is finitely presented.
Further details are contained in [20].

This is of course relevant to the question raised in the last section, asking
whether or not finitely generated subgroups of *F2 are finitely presented, and ap-
pears to be the only progress which has been made on it. If one could improve
Remeslennikov's argument to show that if G is a finitely generated fully residually
free group, then G is A-free for A = Z' with the lexicographic ordering, for some
m, the last part of Pfander's argument would work to show G is finitely presented,
giving an affirmative answer to the question. However, attempting this seems to
raise basic questions about extending a valuation on a field to an extension field.

A very recent development is an interesting paper by Fine et al. [10], in which
it is observed that (F,)R is fully residually free, merely assuming that the additive
group R+ of R is torsion-free and Z is a pure subgroup of R+. Examples of such
rings are the rings in which every finitely generated subring is fully residually Z,
which are considered in §3 below. A particular example is the polynomial ring
Z[t1,... , t,,,]. Further, under these assumptions on R, finitely generated subgroups
of (Fr)R embed in (F,,)ziti, and finitely generated subgroups of (Fu,)z[t] are A-
free for A = Z"° with the lexicographic ordering. The argument of Wander then
shows that finitely generated subgroups of (F,,)z[t] are finitely presented. The main
results in [10] concern residually free groups. It is shown that every 3-generator
fully residually free group is embeddable in (F,)ziti, and every 2-free residually
free group is 3-free. (A group is r-free if every subgroup generated by r or fewer
elements is free). Also, there is a classification of fully residually free groups of
rank at most 3 (rank meaning minimal number of generators). A fully residually
free group of rank 1 is infinite cyclic (residually free groups are clearly torsion-free),
and the rank 2 case is covered by Theorem 1.1(iii). In [10], the authors show that
if G is a fully residually free group of rank 3, then G is either free of rank 3, free
abelian of rank 3, or else G has a one-relator presentation

G = (x, y, t I

tvt-1 = v)

where v is a word on {x}1, y±l} representing a non-trivial element on the free group
on {x, y} which is not a proper power.

It should be pointed out that not all tree-free groups are locally fully residually
free. For example, it is shown after Theorem 3 in [15] that G = (x, y, z I x2y2z2 = 1)
is tree-free, but not a model of the set of sentences 4 , so is not fully residually free
by Theorem 2.5. The argument shows that this group is not residually free.

One can ask what properties of (locally) fully residually free groups hold for
all tree-free groups. For example, if G is a finitely generated tree-free group, is
G A-free for some finitely generated A? In connection with parts (i) and (iii) of
Theorem 1.1, it is known that tree-free groups are commutative transitive, and that
a two-generator subgroup is either free of rank 2 or free abelian (see [6] and [24]).
Other open questions are: is a tree-free group locally indicable, and is a tree-free
group orderable, or at least right orderable? (A group is locally indicable if every
non-trivial finitely generated subgroup admits a homomorphism onto the infinite
cyclic group. It is known that locally indicable implies right orderable).
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4. In Lemma 2.2 the idea of a fully residually Z ring was used. We now consider
residually and fully residually Z rings in slightly more detail, discussing some of the
results in [9]. By considering the additive commutator (xy - yx) of two elements
x, y, we see that a ring which is residually Z is commutative. We also have
the following simple result, which was noted as part of Theorem 2 in [21]. The
equivalence of (1) and (3) is, of course, an analogue of Theorem 1.1(ii).

Lemma 4.1. Let R be a ring. The following are equivalent.

(1) R is 2-residually Z

(2) R is residually Z and has no zero-divisors

(3) R is fully residually Z.

Proof. Left as an exercise.

Note also that a non-zero residually Z ring has its prime ring isomorphic to Z,
since it admits a ring homomorphism to Z. The following is an analogue of Lemma
2.1, and the proof is similar.

Lemma 4.2. Let R be a non-zero ring such that all finitely generated subrings
are fully residually Z. Then R embeds in some ultrapower of Z.

0

This enables us to prove an analogue of Theorem 2.4, which is a slight general-
isation of Theorem 2 in [21].

Theorem 4.3. Let R be a non-zero ring. The following are equivalent.

(1) All finitely generated subrings of R are fully residually Z

(2) R embeds as a ring in some ultrapower of Z

(3) R has the same universal theory as Z in the first-order language L1 of rings.

Proof. (1) implies (2) by Lemma 4.2, and (2) implies (1) by Lemma 2.2. Assume
(2); then Z C R C ZI/D for some index set I and ultrafilter V on I. It follows
from the remark at the beginning of §1 that (3) holds. Conversely (3) implies (2)
by the same remark.

There is a characterisation of finitely generated residually Z rings, and of finitely
generated fully residually Z rings. Let n be a positive integer, and let Z [xl, ... , xn]
be the polynomial ring in n commuting indeterminates. If S is a subset of Zn we
denote by I(S) the set

If E Z[x1i...,xn] I f(a) = 0 for all a E S}

where a means a1,..., an. Thus I(S) is an ideal in Z[xl,... , xn].
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Lemma 4.4. Let R be a finitely generated ring. The following are equivalent.

(1) R is residually Z

(2) R is isomorphic to Z[xl,... , x,]/I(S) for some positive integer n and subset
S of Zn.

Proof. Assume (1). Since R is finitely generated, it is isomorphic to Z[xl, ..., xn]/I
for some ideal I and positive integer n. Let S = {a E Zn I f(a) = 0 for all f E I}.
Then I C I(S). Suppose I # I(S), and let f E I(S) \ I. Then f + I # 0 in
Z[X1, ..., xn]/I, so there is a ring homomorphism 0 : Z[X1, ..., xn]/I -- Z such
that q5(f + I) 0. Let 0 be the lift of 0 to a homomorphism Z[xl, ..., xn] , Z;
thus if O(xi) = ai, then &(g) = g(a). If g E I, then &(g) = 4>(g + I) = 0, hence
a E S. But f (a) = ¢(f + I) # 0, contradicting f E I(S). Thus I = I(S).

Conversely, assume (2), and suppose f + I(S) $ 0 in Z[xl,...,xn]/I(S), that
is, f I(S). Choose a E S such that f (a) # 0. Let 0 : Z [xi, ... , xn] --> Z
be the ring homomorphism sending xi to ai for 1 < i < n. Then if g E I(S),
0(g) = g(a) = 0, so 0 induces a ring homomorphism 0: Z[X1, ..., xn]/I(S) -. Z,
and q5(f + I(S)) = f (a) # 0, showing that the ring Z[X1, ..., xn]/I(S) is residually
Z.

Corollary. Let R be a non-zero finitely generated ring. The following are equiv-
alent.

(1) R is fully residually Z

(2) R is isomorphic to Z[xl,... , x,]/I(S) for some positive integer n and subset
S of Zn such that I(S) is prime.

Examples of fully residually Z rings are Z[xl, x2i x3]/(x1 + x2 - x3), which is
studied in [9], and Z[xl, x2]/(x1 - nx2 - 1), where n is a positive integer which is
not a square, which is given in [10]. The paper [9] contains other results on these
classes of rings, such as the following.

Proposition 4.5.

(1) If A and B are residually Z rings, then so is A ®z B.

(2) If A and B are fully residually Z rings, then so is A ®z B.

(3) If all finitely generated subrings of A and B are fully residually Z rings, then
the same is true of A ®z B.

In view of the fact that tensor product is the coproduct in the category of
commutative rings, Proposition 4.5 may be viewed as a (not very precise) analogue
of Theorem 1.1(iv).
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Abstract
A theorem of Schreier states that subgroups of free groups are free. From

the perspective of nonstandard analysis it is natural to ask whether an analo-
gous result holds for an ultrapower of a free group. This question leads to the
investigation of presentations of finitely generated subgroups of ultrapowers
of free groups. In this paper we prove that finitely generated subgroups of
the free Z[t]-group, which we will denote by F2i are finitely presented. Indeed
these groups are isomorphic to groups constructed from finitely generated free
groups by finitely many applications of the operations of taking amalgamated
products and HNN-extensions. The bearing of this result upon the original
question is that in the course of the proof we shall embed F2 into *F2 and
so the result gives us some information about finitely generated subgroups of
'F2-

1 Introduction
Because of the interest in the elementary theory of free groups, the structure of
subgroups of an ultrapower of a free group has received some attention. For ex-
ample Gaglione and Spellmann conjecture in [Ga 94] that all finitely generated

166
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subgroups of *F2 are finitely presented. The question as to whether or not finitely
generated subgroups of *F2 are finitely presented arises naturally as a generaliza-
tion of Schreier's theorem, which says that subgroups of free groups are free (and
hence finitely generated subgroups are finitely presented). That Schreier's theorem
does not itself extend to *F2 can be seen from the following example. Let x and y
be generators for F2. Consider the two sequences (X' ),E,, and (X,,2

)fEw of elements
of F2. We may regard *F2 as an ultraproduct 11 F2/D, where D is an non principal
ultrafilter on w and so these sequences give rise to two elements of *F2, which we
shall denote respectively as (xn) and

(xn2). These elements commute although
there is no single element of *F2 of which they are both a power. Consequently
(xn) and (xn2) generate a subgroup of *F2 which is isomorphic to Z x Z. This
shows that freeness is not the same as *-freeness.

The result of this paper is that finitely generated subgroups of the so-called free
Z[t]-group on two generators, (which we will denote by 12) are finitely presented.
The bearing of this result upon the original question is that in the course of the
proof we shall embed F2 into *F2 and so the result gives us some information about
finitely generated subgroups of *F2.

In fact the main tool we shall use, Bass-Serre theory, actually gives rise to
concrete presentations of such groups. It will turn out that every finitely gener-
ated subgroup of F2 is isomorphic to a group constructed from finitely generated
free groups by finitely many applications of the operations of taking amalgamated
products and HNN-extensions.

We now give a brief outline of the content of the paper. After setting up the
universe of discourse we spend section 3 on introducing the free Z[t]-group on two
generators .1'2 and on embedding this group into *F2. This proof relies mainly
on Lyndon's normal form for 12 and is rather technical. The proof of the main
result does not require details from this section. Now let G be a finitely generated
subgroup of 12. In section 5 we will show, in Lemma 5.2, that there is a Lyndon
length function C : G - (Zm, <), where < is the lexicographic ordering. By a
construction of Chiswell in [Ch 76] this gives rise to a free action of G on a Z'-tree
without inversions. Now a theorem by Bass, which generalizes Serres structure
theorem (Theorem 13, [Se]) applies. This will tell us that G is isomorphic to
a certain fundamental group of a graph of groups. This group will be finitely
presented, having the aforementioned structure.

Finally I want to express my gratitude to Professor Angus Macintyre and Pro-
fessor Knut Radbruch for their intellectual and personal support, which enabled
me to write this paper. I also want to thank Simon Chatterjee for his help on the
texnical side.

2 Notations and the mathematical set up

Let S = e} be the language of groups. We will denote the free group on two
generators, given as a S-structure, by F2. The set {x, y} will be a set of generators
for F2. Let W° be the set of words in the letters x, x', y, y' for F2 and let e be the
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empty word. We denote the natural map W° -+ F2 by it.
Let Z be the integers considered as an ordered abelian group and L : F2 -> Z

the length function for F2. So g E F2 is mapped by L to the length of the shortest
word w9 E W° representing g. Let min be the arithmetic function min : Z x Z -> Z.

In order to apply the theorem of Los to objects like it or L, we need a mathe-
matical set up consisting of a superstructure containing F2, W° and Z. Thus we
define M = F2 U W° U Z, the disjoint union of F2, W° and Z. We denote the
language of the superstructure V(M) by Sv(M).

Let D be a non-principal ultrafilter on w. Now let *M = fl MID and V(* M)
be the corresponding superstructure. By the theorem of Los there is a natural
elementary embedding

* : V(M) -> V(*M).

So every constant symbol a in Sv(M) has an interpretation *a in V(*M) and every
function symbol f E Sv(M) has an interpretation *f in V(*M). We have *F2
fl F2 /V and *(W°) = fl WO ID. We will denote elements g E *F2 as g = (gn).

We will refer to * < E V(*M) as < and to *min E V(* M) as min, since no
ambiguity will arise.

3 z[t]-groups, their normal form and the embedding
Y2__ *F2

3.1 Z [t]-groups

Definition 3.1 Ay 60] Let R be an unital ring. Define S' to be the language
1.'_i' e, fa}aER, where J. is an unary function symbol. An R-group G is a S'-
structure satisfying the following axioms (we write ga for fa(g).):

1. the usual group axioms, formulated in the language S = e}.

2. g1=g

2. g(a+a) = ga ga

4. gia = (go )"

5. g(hg)a = (gh)ag, for all g, h E G and for all E R.

In the class of `n-generator R-groups' free objects exist, since this class is equa-
tionally defined : the number of generators is fixed so it follows from a theorem of
Birkhoff (see for example Corollary 2 ,§25, chapter 4 in [Gr]) that there is a free
algebra in the class of n-generator R-groups.

We will be concerned with the free Z[t]-group on two generators, which we will
denote by F2. Then, as in [Ly 60], let F° = F2 and define recursively,

F'=(ga : 9EF'-1 ;aEZ[t])s,
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where (...)S denotes `generation as a group in the language S'. Then F2 equals
UiEu,F' (see [Ly 60]). Let H :.F2 -* w be the function

H(g) = min{i : g E F`},

and call H(g) the height of g. Using this notion we have

F = {g E F2 : g has height H(g) < i}.

In order to distinguish between words and group elements we need the following
definitions, parallelling the construction of F2 and F' above. Let W° be the set of
all words in the letters x, x', y, y', i.e. W° is recursively defined as follows:

1. x,y,x',y'EW°

2. if w1i w2 E W° then W1 W2 E W°.

Further more define recursively W',

1. If w E Wi-1, then w E W'.

2. If w1i w2 E W' then W1 W2 E W'.

3. If w E W'-1, a E Z[t] then (w, a) E W'. We will write w" instead of (w, a).

Let W = U4E W' be the set of words. We can define a height function on W too.
Then H(w) = 0 if w E W° and w is a word of height 0. If W E Wx\WI'-1 we
define H(w) = K and say that w is a word of height K. The general form of w E W
is w = wi' ... w"*, where H(w;) < H(w). Now we define recursively:

To: WO - F°=F2
1r':W' - F', i> 1

where 7r° = 7r is the natural map and 7r', i > 1, is defined as

r, (w) = 7r2-1(w), if H(w) < i - 1,
7r'(w) = 7rf-1(v)" if H(w) = i, and w = v«, and H(v) = i - 1.
7r'(wlw2) = 7r'(wl)7r'(w2) for all w1, w2 E W.

Note that 7r'IW''1 = 7r'-1. So we can define

7r': W --> F2

7r'(w) = 7r'(w) if w of height i.

We call 7r' the natural map.
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3.2 Nonstandard retraction maps
We will identify polynomials a(t) E Z[t] with the induced polynomial function,

Let for any nEw

Pn : Z[t] -+ Z
O(t) ,--, a(n)

be the evaluation map. These maps are ring homomorphisms. We use these maps
to define nonstandard evaluation maps for all q = (qn) E *Z, i.e.

P, : Z[t] - *Z
a - (pnn(a)) = (a(qn))

Then p,, is a ring homomorphism. Moreover

c N (c) if c constant
(1)

t '-' (qn) = q

Lemma 3.2 Let 'q E *Z \ Z, q > 0 and let Z[t] be equipped with the lexicographic
ordering. Then p,, : Z[t] -+ *Z is injective and order preserving.

Proof Let a E Z[t] be in the kernel of p,,. Then p,,(ca) = 0, what is equivalent to
{n : p,n(a) = 0} E D. The ultrafilter D is non-principal over w, whence p,, (a) = 0
for infinitely many n. It follows that a = 0 and that p, is injective. The map p, is
order preserving by (1) and the fact that q > c for all c E Z.

Every map pn induces a retraction map An : W -> W° by the following definition

Pn(e) = e

pn(x) = x
P W) = x1

Pn(y) = y

An (Y') = yl
Pn(w) = Pn(wi)pn(wz) if w = w1w2

(... (Pn(w)Pn(w))Pn(w) ......Pn(w))

pn(u7°) = (...(Pn(w )Pn(w ))Pn(w)......pn(w ))

lPn(a)I-times
e

ifpn(a)>0

if pn(a) < 0

if Pn(a) = 0,

where, if w = wi' ...wn^, and Si E {-1,1}, then w' = wn`^ ...wi".
Now pick for any g E F2 a representative w E W and define fin : F2 -> F2 by

fin(g) = T(Pn(w))-

This is well defined and the following diagram commutes:
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WP W°
fir'

fir
12 F2

Since fin o ir'(w) = it o pn(w) holds by definition of 1i , the maps pn have the
following properties:

on(go) = gPn(a) if H(g) = 0
Pn(9a) = fin(9)P"(0') if H(g) > 0

Pn(9192) = Pn(91)Pn(92) for all 91,82 E .F2.

Hence pn is a group homomorphism for any n E W.
Now we use An and pn in order to define nonstandard retraction maps. For

y = (r/n) E *Z, we define pn : W -> *(W°), by

P,(w) = Vnn('w))

and analogously P,, :.12 -> *F2.

P, (g) _ (Pnn(g)) (2)

Hence P is a group homomorphism. It follows by an application of the theorem of
Los that the following diagram commutes.

W--PV- *(W°)
17r'

1 *T

- ` *F2

3.3 Lyndon's normal form for F2

By [Ly 60] there is a normal form for elements of free Z[tl,..., t,n]-groups available.
We will outline this normal form in the special case where we deal with .F2, the
free Z[t]-group in two generators.

In a free group the normal form of a word, representing a group element g, is
the unique reduced word representing g. Lyndon apes this idea in the sense that
he associates with any word w E W, a word w9 which is in some sense reduced.
Roughly speaking this means that , if w E W, w = wi' ...w"r, then pn(w"`) E W°
does not cancel with any adjacent factor. This is generally not the case for all
retractions pn, as the following example shows: let w = x(yx)t-5. Then, with
wl = x and w2 = yx we see that An(w1) does not cancel with pn(w2 5) if n > 5.
On the other hand let n = 2. Then p2(w1) and p2(w2 5) = x-1 y-1 x-1y-1 x-1y-1
cancel on the left. It depends on the sign of pn(ai_1), pn(ai) and pn(ai+1) whether
or not cancellation between adjacent factors happens. This leads to the assignment
of a collection of normal words to a given word w. For each exponent ai in w we
distinguish between the `normal form of w if p(ai) > 0' , the `normal form of w if
p(ai) < 0' and the `normal form of w if p(ai) = 0'. We will call formulae of the
type p(ai) > 0, p(ai) < 0 and p(ai) = 0, conditions. Formally this gives rise to the
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need to regard a normal form of w E W as a tuple (w', C), where w' E W and C is
a set of conditions. Then we say a given retraction pn satisfies C, if the conditions
in C hold for pn,.

Moreover we can associate arbitrary finite sets of conditions C with any word
w E W and write (w, C). We consider also the empty set as a set of conditions.
Then we define which of these words with conditions are in normal form. A set of
conditions C for a word w need not be satisfiable. Then we say C is inconsistent.
If there is at least one n E w such that pn satisfies C, we say C is consistent.
Lyndon defines two sets of words with conditions W1, W2, to be equivalent, if
they have the same sets of values, i.e. if for W1 = {(w1iC1),...,(wm,,Cn)} and
W2 = {(w', Dl),..., (wl', Dl)} and for all n E w,

{pn(wi) : pn satisfies C 1 < i < m} = {pn(w') : pn satisfies Dj,1 < j < 1}.

Equivalently we define two sets of words with conditions W1, W2 to be equivalent,
if it is possible to pass from one to the other using the following steps:

1. replace {(w,C1),...,(w,Cm)} C W1 by {( w,D1),...,(w,Di)} C W2 if the
same retractions satisfy one of the Ci as satisfy one of the Dj.

2. replace (w,C) E W1 by (w',C) E W2, where the set C contains a condition
p(a-/3) = 0 for some a, /3 E Z[t] and w and w' only differ in that one contains
a at a certain place, where w' contains 0.

3. replace (w,C) E W1 by (w',C), if ir(w) = 7r(w') follows from the axiom of
R-groups.

Lyndon defines recursively when a word with conditions (w, C) is in normal form.
Let w be a word of height 0. Then, for any consistent C, (w, C) is in normal form
if w is a reduced word.

Let w be a word of height H(w) > 1, Then (w, C) is in normal form, if

1. W = u1v1'u2v22...v"'ur+l, where ai is non-constant for i E {1,...,r}

2. and the properties N1 - N6, as stated below, hold for (w, C).

N 1 For all i, 1 < i < r, (ui, C) is a normal word of height less or equal to
H(w) - 1 and (vi, C) in (1) is a normal word of height H(w) - 1.

N 2 C contains all the conditions p(ai) > 0 and does not imply any of the condi-
tions p(ai) < k, for all exponents ai in w, and any k E Z. For all i, 1 < i < n
there is no z E W and p E Z[t] \ {±1}, such that (vi, C) is equivalent to (zp,C).
And if H(w) > 2, then (vi, C) is not equivalent to a word (s,C), where s is of
height H(w) - 2.

N 3 Let pn be a retraction satisfying C. Then An(vi) E W° is a non trivial reduced
word beginning with a unique L(vi) as left letter and ending with a unique R(vi)
as right letter. L(vi) and R(vi) do not depend on n E w. Each ui # i satisfies the
analogous condition.
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N 4 1. If ui # i then R(ui)L(vi) # 1.

2. If ui+l 0 i then R(vi)L(ui+i) j4 1.

3. R(vi)L(vi) # i.

4. R(vi)R(vi+i) 34 1, if ui = i.

N 5 1. If ui # 1 then R(ui) # R(vi).

2. If ui = 1 then R(vi) # R(vi+1)
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N 6 For 1 < i < r, there is no word z of height less than or equal to H(w) - 1,
such that (ui+i, C) is equivalent to (viz, C), and such that for all pn satisfying C,
R(vi) does not cancel with pn(z).

We will make use of the following theorem , proved in [Ly 60]):

Lyndon's Theorem I There is an effective procedure to associate with each
word w E W a finite set of normal words {(w1,C1),...,(w,,,,,C,n)}, such that if C
is the empty set of conditions (w, C) is equivalent to {(wi,C1), ..., (w n, C.)) (in
the sense explained above).

The different sets Ci cover the various trichotomies p(ai) > 0, p(ai) = 0 and
p(ai) < 0.

For our purpose we single out one particular (wi, Ci). By the properties of the
ultrafilter D we know that there is an i, 1 < i < m, such that

Ai = {n : pn satisfies Ci) fl w E D. (3)

We assume without loss of generality that (w1, C1) is such a word and define it to
be a good normal word for w.

Lemma 3.3 There exists N E w such that pn satisfies C1 if n > N. Hence Al is
cofinite in w.

Proof Since (w1, C1) is a normal word we know by property N2 , that C1 contains
all conditions pn(ai) > 0, where ai is an exponent occurring in w1. By (3) we know
that infinitely many retractions pn, n E w, satisfy C1. Since V is a non principal
ultrafilter it follows that for all exponents ai in w1i limn-oo ai(n) = +oo must
hold. For every ai there is a Na; E w such that ai(n) > 0 for all n > Na;. If we
define N = max{Nn; : ai an exponent in wl}, we get

ai(n) > 0 for all aj, exponent in w1, and all n > N.

This is equivalent to saying

pn satisfies C1 for all n > N.
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It follows that Al is cofinite in w.
It will be of use to add another condition into C1. We define

CN=C1U{p(t-N)>0}.
Then pn satisfies CN if and only if n > N. Moreover (w1iCN) is still a normal
word.

Now we embark on assigning a normal word w9 to a group element g E F2. We
do this by choosing an arbitrary word w E W representing g E F2. Let (wi, Ci)
be a good normal word for w. Then we associate to g the normal word wl . We
have to show that this assignment is well defined and does not depend on any set
of conditions. The tool to show this is Lyndon's uniqueness Lemma (Lemma D,
[Ly 60]).

Lyndon's Uniqueness Lemma Let (w, C) and (v, C) be normal words. If we
have a'(w) = n(v) then w = v holds.

So let g E F2 and let w, w' E W be two words representing g. Let (wl, C1) be a
good normal word for w and (wi, Ci) be a good normal word for w'. Furthermore
let N, N' E w be such that pn satisfies C1 if n > N and pn satisfies Cl' if n > N.
These N and N' do exist by the previous Lemma. Define M = max{N, N'}. So
we get that pn satisfies C1 and Ci if n > M. Moreover (wiiCM) and (wi,C'M)
are normal words. Now pn satisfies CM if and only if pn satisfies C'M if and only if
n > M. Thus we can replace C'M by CM, whence (wi, CM) is a normal word too.
This implies by Lyndon's uniqueness lemma that w1 = w'1. This argument shows
as well that the good normal word w1, associated to g is independent of a concrete
set of conditions.

We fix some notation: We will denote the unique normal word for g E .F2 by
w9. Say w9 = u1v"u2v22 ...v"rur+1. Let =(w9) = (w9n), he. wgn = -,,(w.) and
we can write as well:

wgn = u1 E W° if H(g) = 0
wgn = ulnvlnPnn(°1) ...vrnPnn(ar)71r+1n E W° if H(g) > 1

Note that if the height of g is 1, we can write

wgn = ulvlnn(Q1)...v°nn(Olr)ur+l E W° e

since ui, vi are of height 0, and so ui, vi E W°.

(4)

Lemma 3.4 Let g E F2 be such that g # 1 and let w9 be the normal form of g,
i.e. ,,(w9) = (wgn) as defined above. Then

1. in : uin, vin do not cancel } E D

2. In : vin, ui+1n do not cancel } E D

3. In : vin are cyclically reduced } E V

4. In : wgn E F2 is non trivial and reduced } E D, i.e. g is `* - reduced'.
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Proof First note that 1. - 3. are clear if g is of height 0. So let g be of height
H(g) > 1. By the definition of the normal word wg, we know that all p., such that
n > N, satisfy Cl. Since'q E *Z\Z, we have {n : fin. > N} E D. If 71n > N then p,
satisfies C1 . By the filter properties of D we see that In : p,,, satisfies Cl } E V.
Furthermore, if p,, satisfies Cl , we know from the property N3 that p,7 n(ur)
is a nontrivial reduced word which has the right letter R(ut) and Ann(vi) is a
nontrivial reduced word which has the left letter L(ur). By N4.1 we know that
R(ui)L(ui) # e. This means that, if p, satisfies Cl then urn and vin do not cancel,
i.e.

In: uin, vin do not cancel } 3 In : p, satisfies C1 } E D,

and it follows by the filter properties of D that

In : uin, vin do not cancel } E D.

Part 2. and 3. follow equally using N4.2 , respectively N4.3 , instead of N4.1 .
In order to prove 4. note that wgn = pnn(w9) is a non trivial reduced word if

p,n satisfies Cl'. So

{n : wgn E F2 is non trivial and reduced } 3 In : pI satisfies Ci } E D,

and it follows that in : wgn E F2 is non trivial and reduced } E D. This finishes
the proof.

Lemma 3.5 For any y E *Z \ Z, rt > 0, the map

A?: T2 - *F2

is an embedding of groups.

Proof The map p, is a is a group homomorphism since is a is a group
homomorphism for all n E w, as already pointed out. Let g E F2 such that g 1.
By the previous Lemma we know that in : wgn E F2 is non trivial and reduced } E
D. It follows that

5, (g) = (ir(pn(wg))) = (ir(wgn)) j i E *F2.

This shows that p,, is injective.

Note that pn(Z[t]) is a subring of *Z, isomorphic to Z[t]. We will identify F2
with its isomorphic image p,,(.F2) and W with pn(W). Moreover we identify 7rPn
with 7r, where 7rPn is the map which makes the following diagram commute.

W pn(W )
j7r

jiPn
F'pn(F2)
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The injectivity of p,, enables us to associate with every pg(g) E *F2 a normal
word p,t(wg) E *(WO). Then we will identify and g in *F2 and identify pn(wg)
with w9 in *(WI). We will write

,rvg = ulvlo(°i) U2v2n(a2) ... v,P'1(°'')ur+1.

By this convention we can write wg = (wgn) and so we have as in (4):

wgn = UlnvlnPnn(-I) ...4l,.nPVn(«r)u,.+ln E WO.

4 A-trees and Bass-Serre theory
The reader should be familar with the notion of A-metric-spaces, actions of groups
on graphs and Bass-Serre theory. Here we restrict ourselves to setting some notation
which will be used later on.

Let A be a totally ordered group, written additively. For every such group we
can define a map I IA : A -> A, by mapping

A ifA>0
-A ifA<0.

If there is no need to specify A or A is clear, we write JAI instead of IAIA, where
A E A.

Let (X, d) be a A-metric space and let x, y, v E X. As in [Al 87] we then define

x Av y := 2(d(x, v) + d(y, v) - d(x, y)) E A.

Bass-Serre Theory for A = Z

Graph of groups ([Se], Definition 8). Let Y be a connected nonempty graph.
A graph of groups G consists of Y and

1. a group Gx for every x E V(Y),

2. a group QJe for every e E E(Y), such that Ge = Ge,

3. and an embedding Ge -p ct(e), g'-' ge, for all e E E(Y).

Consequently we denote the image of Ge in yt(e) by Ge. Note that by 2. and
3. there is an embedding QQe - 9o(e), defined by g r- ge. Then the image of J('e in
co(e) is denoted by Ce.

The fundamental group of a graph of groups Next we define, as in [Se],
chapter I, §5.1

F(c,Y) = (* 9. * E(Y)) / (Rtc)
, (5)

-EY

the free product of the vertex groups 9, and the free group generated by the ele-
ments of E(Y), modulo the normal subgroup generated by the following relations,
which constitute R':
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1. e-1=e foralleEE(Y)

2. egee'1 = ge for all e E E(Y) and all g E 9,-

Let T be a maximal subtree of Y. We define

1Z=R'U{e=1:eEE(T)}

and

r1(9, Y, T) = (* cx * E(Y))l (RG) . (6)
-EY

We call ir1(C,Y,T) the fundamental group of g relative to T.

Serre's structure theorem Let G be a group acting without inversions on a
nonempty connected graph X. Let Y = G \ X and T be a maximal subtree of Y.
Let 1 be the graph of groups constructed in [Se] Then G ^_' a1(9,Y,T) if and only
if X is a tree.

Base change

We will need to apply the theorem about base change (Proposition 4.4 in [Al 87])
in a special case, presented in the following Lemma.

Lemma 4.1 Let A = (Zm, <), where m E w and < is the lexicographic ordering
and A* = Z is equipped with the usual ordering. Let

pr :Zm -, Z
(al,..., am) '-' am,

be the projection map where am is the biggest component. Let (X, d) be a Zm-tree.
Then there is a tree (X*, d*) and a mapping 0 : X - X* such that for all x, y E X

d*(b(x),V,(y)) = pr(d(x, y)) (7)

Moreover, if (X', d') is another tree and ,0' : X - X' a map satisfying

d'(1/)'(x), 4)'(y)) = pr(d(x, y)) for all x, y E X,

then there is a unique metric morphism of trees p : X* -, X' such that p o ' = 0'.

Notation (Analogous to the notation in [Ba 91]).
From now on we will write x*, for b(x) and for any subset Z C X we will write Z*
instead of ,(Z). We let X* = Z Oz- X. Furthermore we define

X(x*) = {y E X : d(x, y) E ker(pr)} =

Since ker(pr) = Zm-1 we have that X(x*) is a Zm-1-tree.
Proofs of the following Lemma can be found in [Ba 91]
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Lemma 4.2 With the assumptions above the following is true

1. If G acts on X as isometries, then G acts on X* as isometries.

2. If G acts without inversions on X, then G acts without inversions on X*.

The following Lemma is a synthesis of Propositions 1.6.a. and 1.7.d. in [Ba 91].
We are giving it here, since it introduces the map Tr, which is then important
for Bass' generalized structure theorem ([Ba 91]). It combines base change with
Serre's structure theorem.

Lemma 4.3 Let (X, d) be a A-tree and let G be a group which acts on X as
isometries. Denote the end stabilizers by GE = {g E G : ge = e}. Then for every
end a there is a homomorphism

TE:GE-+A.

If the action of G on X is free then TE is injective.

Bass' generalized structure theorem

(Theorem 3.5., [Ba 91]).
Let A = (Z"t, <), where m E w and < is the lexicographic ordering. Let G be a group
acting on a Z'-tree (X, d) as isometries and without inversions. Let X* = Z®$mX
and Y = G \ X*. Moreover let T be a maximal subtree of X* and p : X * Y be
the projection map. We denote points of X* by x*, the points of Y by i = p(x*).

Then G acts on X* without inversions and there is a graph of groups 9 such
that G - ir1(G,Y,T). Furthermore if ggg denote the vertex groups and Ge denote
the edge groups, the following holds

1. for each x E Y, 9x acts on the Z'-'-tree X(x*).

2. for each edge e E E(Y) there is an end ee in X(o(e)) of full Z`-type,
satisfying

Ge = (yo(e))fe, (8)

i.e. the image of Ge in cjo(e) is the end stabilizer of ee [of the action of yo(e)
on X(o(e))j. That means that the elements g E co(e) stabilizing e are exactly
the elements g E c0(e) stabilizing ee. Then we also have Ge = (ct(e))ez
Furthermore

r (ge) = -Te (ge) for 9 E G!e (9)

If f $ e are edges of Y and o(f) = o(e) = i, then -f and ee are in distinct
orbits of the action of Qx on Ends(X(x*)).

3. If G acts freely on (X, d) then Cx acts freely on X(x*) for all i E V(Y).
Moreover Tfe o e : Ge Zm, g H Tee(ge) is injective and ce are finitely
generated free abelian groups.
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5 Lyndon length functions

Definition 5.1 Cf. [Ly 63]. Let A be an ordered abelian group. Let G be a group.
A mapping L : G - A is called a Lyndon length function if it has the following
properties:

1. L(i) = 0

2. L(g) = L(g-1) for all g E G

3. Letb:GxG !Abethemap

b(f, g) = 1(L(f) + L(g) - L(f-'g))

Then S(f, g) E A for all f, g E G.

b(f,g) > min{S(h,g),S(f,h)} for all f,g,h E G.

Let L : F2 - Z be the usual length function for F2. So L maps g E F2 to the
length of the shortest word w E W° which represents g. This is obviously a Lyndon
length function.

Now in V(*M) there is a map

*L: *F2--+*Z.

This map is defined as

*L((gn)) = (L(gn))

for (g,,) E *F2. Since we can express 1.-4. in Definition 5.1 as first order formulae
in the language of Sv(M), it follows by the theorem of Los that these properties
hold for *L as well. Whence *L is a Lyndon length function too. Let ,C' = *LI.F2
be the restricted Lyndon length function *L for .F2,

.C':F2- *Z.

The length of g = (gn) E *F2 will be calculated via the length of the normal word
w9, representing g. This is admissible since in : w9, E F2 is reduced } E D by
Lemma 3.4. By convention we then write C(g) = .C(w9).

Lemma 5.2 Let G be a finitely generated subgroup of *F2 with generators from.F2
and let {gl.... gn} be a generating system. Then there is an m E w and a Lyndon
length function

.C : G -* (Zm, <),

where < is the lexicographic ordering on Zm.
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Proof First we want to show that that the image of ,C' is contained in p,(Z[t]).
We do this by defining inductively maps LK : FK --+ Z[t], for K E w, where here
FK = {g E .F2 : H(g) < K} such that the following equation holds

£'(g) for all g E F2 such that H(g) = K. (10)

The start of the induction is trivial, since then g E F2 and £'IF2 = L holds.
Assume we have shown that there is a map £K : FK -+ Z[t] such that (10) holds

for K > 1. Let g E F2 be of height H(g) = K + 1, given in normal representation
as follows:

P,1(°",) P,(c2) pn(ar)wy = 2G1 U1 u2v2 .. . yr ur+1 ,

where ui, v, E F2 of height H(g) < K. We can calculate £'(g) = £'(w9), since by
Lemma 3.4.4 In : wgn is reduced } E D. We get

V(9) _ .C'(ul) +.C'(v1Pn(a1)) + ... + L'(vrP"(ar)) +.C'(ur+l), (11)

since by Lemma 3.4.1 and 3.4.2. we know that in: uin and vin do not cancel } E
D and In : vin and ui+ln do not cancel } E D, where ui = < uin > E *F2 and
vi = < vin > E` F2. Furthermore

L'(viP,itai)) = P,7(ai)'C'(vi), (12)

since In : vin are cyclically reduced } E V by Lemma 3.4.3. Inserting (12) into
(11) we get

V(9) = -C'(u1) + P,7(al)C'(vl) + L'(u2) + .. .
...+Pr1(ar)'C'(vr)+.C'(ur+l) E * Z. (13)

Now we will apply the induction hypothesis on ui, vi, since they have height H < K.
This tells us that there is the map CK : FK -+ Z[t], satisfying (10):

P,,(/K(ui)) = C'(n ), Pn(rK(vi)) = C'(Vi)-

We substitute this into (13) and get

C'(9) = Pn(CK(ul )) + Pn(al)P,(rK(vl)) + P,(CK(u2)) + .. .
... + P,,(ar)P,(CK(vr)) + P,(LK(ur+1)),

and since p, is a ring homomorphism this is equivalent to

C'(9) = p,,(LK(ul) + alrK(v1) + LK(u2) +... + arrK(vr) +.CK(Ur+1)) E Z[t].

Now define
-CK+1 : FK+1 - Z[t]

by

9 ` CK(ul) + al,CK(vl) + ... + ar.CK(vr) + ,CK(ur+l) if H(g) = K + 1
9 H CH(9) if H(g) < K.

(14)
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,CK+1 is well-defined. Note that Ck+11FK = GK. Furthermore (10) holds by
definition. Now we define

C :F2 --> Z[t]
g H ,CH(g), where H is the height of g.

,C defines a Lyndon length function by (10) and Lemma 3.2.1 which said that p,
is an order preserving isomorphism Z[t] °-' p,,(Z[t]). This implies that < is the
lexicographic ordering on Z[t]. Now we let G be a finitely generated subgroup of
*F2 where the generators gl, ... , g are chosen from F2. Assume without loss of
generality that gl is the longest generator, i.e..C(gi) > ,C(gi) for all i E {1, ..., n}.
Say.C(gi) is a polynomial of degree m'. Let g E G be such that g = gi, ... gi,,, where
gi, E {gi, gi 1 : gi generator of G } for 1 < l < k. Thus C(g) < ,C(gj,)+...+,C(gj,F ),
where ,C(g,) are polynomials of degree less or equal to m'. Hence for all g E G
the length ,C(g) is a polynomial of degree less or equal to m'. This is equivalent to
saying

L:G - Z',
where m=m'+1.

We will also use the notation IgI (= .C(g)) for the length of g E G.

6 Chiswell's A -tree (X, d)

The next Lemma is essentially Theorem 3.10 in [ChPre].

Lemma 6.1 Let G be a finitely generated subgroup of *F2 with generators from
F2. Then there exists an m E w such that G acts freely without inversions on a
A-tree (X, d), where A = (Zm, <), and < is the lexicographic ordering.

Construction Before we describe (X, d), note first that G itself gives rise to a
A-metric space (G, d'), where the metric d' : G x G -+ A is defined as d'(g, h) _
,C(g-1h) for all g, h E G.

Now we construct X as X = Z/ -, where

Z:={(x,n)EGxA:0<n<IxI}

and
both n = m

(x, n) (y, m) iff
and x Al y > n are satisfied

(15)

Denote the equivalence class of (x, n) by (x, n). The point (1, 0) is the root of the
A-tree. The metric d: X x X -> A is defined by

d((x, n), (y, m)) = m + n - 2 min{n, m, x Al y} E A. (16)

This map is well defined. Then (X, d) constitutes a A-tree by Theorem 3.8 in
[ChPre], respectively Lemma 3 in [Ch 76]. Moreover, again by [Ch 76] the following
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formula holds for g, x E G, 0< n< I x I

9 (x n)
{(g'igl_n)

iff n < g-1 A,, x (17)
(gx, IgI + n - 2(g-1 Ai x)) if n > g-1 nl x.

Basechange in Chiswell's A-tree (X, d)

Now we apply the base change Lemma 4 to X. So the homomorphism of ordered
abelian groups is again the projection map pr : Z' - Z, where (al, ... )a,,,,) I--* am.
So points of X* = Z ®gm X will be denoted by (x, n)*. As indicated in section 4
on base change, and Lemma 4.2 the isometric action of G on X without inversions,
induces an isometric action of G on X* without inversions. By the definition of
the action of G on X' (gx* = (gx)*), the following formula holds

x n)* (g, IgI - n)* * if n < g'1 Al x
g (', _ (gx, I gI + n - 2(g-1 Al if n > g-1 Al x.

(18)

Lemma 6.2 Let G be a finitely generated group, such that {gl,...,g,,.} C F2 is a
generating system. Let X be the A-tree from Lemma 6.1 and X * = Z ®A X. Then
Y = G\X* is a finite graph.

Proof First note that every point (g, IgI)* lies in the orbit of the basepoint (1, 0)*
because g (1, 0)* _ (g, IgI)*

We define

S := {(gi, k)* : gi generator or the inverse of a generator of G, 0 < k < Igil*}.

Since X* is a Z-tree, we know that Igil* E Z . If 0 < k1,k2 Igil* and k1 - k2 E
ker(pr) = Zm-1 then by 7

d*((gi, k1)* , (gi, k2)*) = pr(d((gi, k), (gi, k))) = 0

holds. Thus (gi, k1)* = (gi, k2)* holds and it follows, that S is a finite set.
In order to prove the Lemma, it is enough to show that every point (x, n)* E X*,

where 1 < n < Ixi, lies in the orbit of a point in S. We will proceed by induction
on the minimum length of x E G, written in the generators of G.

Note that (1, 0)* E S since we have (1, 0) - (gi, 0).
1. First let (x, n)* be such that x be a generator of G. Then for all n, 0 < n <

Ix 1, (x, n)* is defined and obviously (x, n)* E S. If x is the inverse of a generator
of G, then x-1 is a generator of G and we calculate

x-1 (x, n)* = (x-1, I xI -
n)*

since n < x Ae x = I xI. So (x, n)* is in the orbit of element of (x-1, I xI - n)* E S.
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2. Assume that for all elements x of complexity at most j the points (x, n)*,
0 < n < jxj, are in the orbit of an element of S. Let u have complexity j + 1
and suppose u = hu', where h E {gi, g$ 1 : gi generator of G} and u' E G is of
complexity j. Let n E A be such that (u,n)* E X*. Choosing g = h'1 in (18), we
get

h-1 (hu' n)* = (h-1, Ih-1I - n)* if n < h Al u
(u',IhI+n-2(hAiu))* if n>hAlu.

First assume that n < h Al u. Now, if h = gj-1, we succeed immediately in the
first case, since then (x, n)* is in the orbit of (gj, Igj I - n)* E S. If h = gk, then an
argument analogous to the first step of the induction shows that (u, n)* is in the
orbit of (9k_" Igk 1I - n)* E S.

If n > h Ae u, then we know that (u, n)* is in the orbit of an element of the form
(u', n')* E X*, which by the induction hypothesis is in the orbit of an element of
S.

Let e E E(X*) such that o(e) = (x, n)* and t(e) = (x, n + 1)*. Let (x, n)* be in
the orbit of si E S and (x, n + 1)* be in the orbit of sj E S. Then e is in the orbit
of an edge f E E(X*) such that o(f) = si and t(f) = sj. Since S is finite there are
only finitely many such edges and this implies that E(Y) is finite. O

7 The presentation of G
Proposition 1 Let G be a finitely generated subgroup of *F2 with generators from
.F2. Then G is finitely presented.

Proof Let G be a finitely generated subgroup of *F2, such that {g1, ... , gn} C .F2
is a generating set for G. By Lemma 5.2 we know that there is a Lyndon length
function L : G --> (Zm, <), where < is the lexicographic ordering on Zm. We
proceed by induction on the rank m of A :

If m = 1 then Lemma 6.1 tells us that G acts freely on a Z-tree. It follows by
by Theorem 4 in [Se], that G is a free group. Since G is finitely generated it follows
that G is finitely presented.

Assume we have shown that G is finitely presented if k < m - 1. Let G be
generated by 91, , gn E F2 such that m = k. Lemma 6.1 tells us that G acts
freely and without inversions on the Zm-tree (X, d), where Zm is equipped with the
lexicographic ordering. Now we can apply Bass's generalized structure theorem,
introduced in section 4. Then

G = 7r1(9,Y,T)

where

1. X* = Z Oz- X, as defined in section 4.

2. Y = G\X *.
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3. T is a maximal subtree of Y.

4. 9 is the graph of groups constructed in section 4 for the action of G on X*,
as in section 4.

Let p : X * -> Y be the projection map. We shall denote points of Y by i, y, z, ....
We know the presentation of 7r1(9,Y,T) from the definition in section 4, i.e. by

equation (6):

(9,Y,T) _ (* Q,i * E(Y))I (KG)
iEY

If e E E(Y) is an edge such that t(e) = x then we denote the image of g Eye in
by ge. The set R consists of the following relations

1. e-1=eforalleEE(Y)

2. egee-1 = ge for all e E E(Y) and all 9 E Ce

3. e=1ifeEE(T).
By Bass' generalized structure theorem 9x is Z`-free. Thus Cx acts freely on

X((x, n)*), where p((x, n)) = i.
Now we can apply the induction hypothesis on the vertex stabilizers. It follows

that all the 9.j are finitely presented. Then * G,j is finitely presented. Further,
iEY

by Lemma 6.2, E(Y) is a finite set and so contributes finitely many generators to
nl(9,Y,T)

Finally we have to show that the set R of relations is equivalent to a finite set
R' of relations. There are only finitely many relations given by 1. and 3. above
because Y is a finite graph by Lemma 6.2. Since the action of G on X is free, Bass's
generalized structure theorem tells us that 9e is a finitely generated free abelian
group and finitely presented.

It is enough to consider the relations in 2. above for the generators of the edge
groups Q,. Suppose g = gil ...gik Eye, where gi, is a generator or the inverse of a
generator of Ce, then the relation egee-1 = ge can be derived from the relations

egi a-1 = g; , 1 < i < n.

First we see that by eg, e-1 = g, we have also (eg; a-1)-1 = (gE)-1 and it follows

that
1e _1 _teegi_

e = 9i

since (.)e and are group homomorphisms. Thus we can derive the relation

(egg e-1)(egY e-1) e e e-1) e e e
1 2

.. (g,k =gilgF ...gi

This is equivalent to
e e e -1 e ee9il gi ... gi e = 9iX ... gik

and since and are group homomorphisms we get

egee-1 = 9e.
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Thus we get the finite set 1Z' of relations by deleting from 1Z all of the relations
of the second type except the ones for the generators of the 9e. This proves the
proposition. 0

Example Let g1 = x, 92 = y and g3 = (xy)", all given in normal form. Let
G = (g1, 92,93) C *F2. Then ,C(g1) = 492) = 1 and ,C(g3) = (0, 2) E Z[t]. So the
upper bound for the degree of polynomials in C(G) is 1 and

,C:G,ZxZ.
This implies by Lemma 6.1, that G acts freely without inversions on a Z2-tree
X. As above let X* = Z ®z2 X. Then we denote, for example ((xy)" , (0,1))* by
((xy)'',1)* E X*. We can draw X* schematically as the following graph:

((y-lx-1)2n, /3\*
./ \ ((y-ix-1)'n 1)* / \ . ((xy)') 1)*

/
./ \ . ((xy)2i7 ,

3)*

((y_1
x-1)'', 2)* (1, 0)*

((xy)n, 2)*

The big crosses in the points ((xy)i'n,m)* denote branches in the tree X*. In
fact in any such point there is one branch (i.e. edges of length one in X*) for any
g E F2. Two elements g, g' E F2 have the same branch, if and only if the reduced
word representing g-1g' is of the form (xy)", for some n E Z.

By Lemma 6.2 we know that Y = G \ X* is a finite graph. In our case Y is the
following graph:

y

e2

Here i = G (i, 0)* and y = G ((xy)'r,1)*. The maximal subtree T consists of
the points x, y and the edge e1. In order to find the presentation of G we first need
to know the edge and vertex groups 911, Gee, G , Op. To do this we need to fix the
lift j : Y -> X*. j is naturally defined on T C Y, we lift i E Y to (1,0)* E X* ,
y E Y to ((xy)", 1)* E X* and e1 E Y to e E X*. We decide to lift e2 to the edge
f E X*, and this choice determines ry12 = (y-1x-1)'n. Now we get

1. Q,i is the stabilizer of (1,0)* in X*, G<1,ol* as defined in section 4 on the
construction of the graph G. In our case this is the subgroup of G generated
by x and y, i.e. the free group in two generators.
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2. G is the stabilizer of j ((xy)'7,1)* in X*. This is in our case the subgroup of
G generated by xy.

3. ye, is the stabilizer of e in X* and in this example equals the cyclic subgroup
of G generated by xy.

4. GJe2 is also (xy), since f is stabilized by xy.

Note that all vertex groups are indeed free groups and so act freely on a Z-tree by
theorem 4 in [Se].

Since we know that G ir1(G,Y,T), we know that G is generated by the vertex
groups fix, 9y and 7e1, rye, , yet and yet , subject to the following relations

1. rye, = 1 E G , since el E E(T).

2. rye; = 7- 1 for i E {1,2}.

3. "Ye,xy')' = xy and 7e2xy'1'e21 = xy.

Since we know that 7e2 = (y-1x-1)7, and using the symbol a for yet, we see that
G has a presentation as

G = (x, y, a I axya-1 = xy) .
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Rings of definable scalars and biendomorphism rings

Kevin Burke, Mike Prest

Abstract

The definable additive endomorphisms of a module form a ring which we
call the ring of definable scalars of the module. One is lead, by various routes
- model theoretic and algebraic - to consider these endomorphisms and the
rings they form. In this paper we show that these rings may be realised as bi-
endomorphism rings of suitably saturated modules and also as endomorphism
rings of certain functors. We also consider rings of type-definable scalars and
the context of arbitrary sorts.

1. Introduction

2. Rings of definable scalars

3. Rings of type-definable scalars and biendomorphism rings

4. Scalars in arbitrary sorts and endomorphism rings of localised functors

1 Introduction
Let us consider a (right) module M over a ring R. The elements of R act as scalars
on M but, on this particular module, other scalars may act. For instance on any
torsionfree divisible Z-module the ring, Q, of rationals has an action extending
the action of Z via the natural embedding of rings Z y Q. We require that such
"scalars" commute with the R-endomorphisms of the module and hence that they
should belong to the biendomorphism ring of the module. But we shall also require
that our scalars be definable from the R-action, thus excluding some biendomor-
phisms. For instance, the biendomorphism ring of the prefer group Z,., regarded
as a Z-module, is the ring of p-adic integers. This ring is uncountable, so is too
large to consist entirely of definable scalars. In fact, it is easily seen (it also follows
from Theorem 2.5) that the only actions which are definable from the Z-action are
the scalar multiplications by elements of the localisation Z(P) of Z at p.

The sense of the term "definable" is such that if two modules are elementarily
equivalent then they have the same ring of definable scalars. We will require,
furthermore, that if a scalar is defined on a module then it should also be defined
(by the same formula) on every power of the module. We begin by showing that
these conditions already force our scalars to be pp-definable (for pp-formulas, pp-
types and other background from the model theory of modules see [Zie84], [Pre88b]
or, for a brief account [Pre93]).

188
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In Section 4 we include a sort for (the logical equivalence class of) each pp-
formula Vi(v) and a relation symbol ¢/i,b for each pp-pair 0 -. ¢ so that we are
working in the language LeQ+ (see [KuPr92]). Given a model of a theory T, a
corresponding LeQ+-structure contains elements of sort i(v) which correspond to
the cosets of M<<"> modulo O(M), and we denote these elements by a, and the group
they form by M,. The relation symbol ¢/0 is interpreted so that M,1 1 0/0(a,I)
iff M <k(a). For a pp-type p with 0 p a pp-formula in the same finite set
of free variables, we define the type of p modulo the sort 0, pg,, to be the set
{0+V,10: 0 E p}.

2 Rings of definable scalars

Lemma 2.1 Suppose that the formula a(x, y) defines an additive function f on M
and also defines, for each n, the function fn on Mn. Then there is a pp-formula
p(x, y) such that for all n, Mn = a(x, y) +-+ p(x, y).
Proof Let L' denote the language of R-modules enriched by a unary function
symbol F. For each n, let Mn = (Mn, fn) be the L'-structure with F interpreted
as fn. Then Mn = Mn and Mn F(x) = y H a(x, y) by hypothesis. Thus,
for every n, Mi F(x) = y H a(x, y) and hence (see e.g. [ChKe73, 6.3.14])
MR0 H F(x) = y H a(x, y). That is, in MR- the formula a(x, y) defines the
function f xo . So it will be enough to show that f 'o is pp-definable. But it is in
general the case that if N is a module with N = Ntt0 then any subgroup of any
finite power of N which is definable in N is actually pp-definable (apply the method
of proof of [Pre88b, 16.5]).

Since the elementary classes of modules which are closed under formation of
direct products and pure submodules are in bijective correspondence with the closed
subsets of the Ziegler spectrum, ZgR, of R it is natural to associate rings of definable
scalars to closed subsets of this space. Notice that the set of points of ZgR on which
p defines a scalar is the Ziegler-closed subset: [x = x/3yp(x, y)] fl [p(0, y)/y = 0].

Recall [Zie84] that the points of ZgR are the (isomorphism classes of) indecom-
posable pure-injective R-modules and the basic open sets are those of the form
(0/0) = {N : O(N)/r,b(N) # 0} where ?k < 0 are pp-formulas. We use the notation
[0/0] for the complement of (0/0). By the support, supp(M), of a module M we
mean the set IN E ZgR : N is a direct summand of some (pure-injective) module
elementarily equivalent to M}. By [Zie84, 4.10] this is a closed subset of ZgR and
every closed subset is the support of some module.

Fix a closed subset C = supp(M) of ZgR. Consider the set of all those pp-
formulas p(x, y) which define a total function from the first argument to the sec-
ond argument on M (so that M = `dx3yp(x, y) and M = p(0, y) -+ y = 0).
Hence p(x,y) defines a total function on any module with support contained
in C. Let - denote the equivalence relation on this set given by p - p' if
M = `dxdy(p(x, y) - p'(x, y)). Let Rc denote the set of --equivalence classes:
RC is the ring of definable scalars for C (the operations are addition and com-
position, as in R). If C is the closed set of some theory T = Th(M) then we also
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use the notations RT and RM for Rc.
We make some immediate observations. The first points out that the set we

have defined, equipped with the natural operations, is a ring and that there is a
canonical morphism from R to this ring (so to be precise we should mean by the
"ring of definable scalars" the R-algebra R - RC).

Proposition 2.2 1. There is a natural ring structure on RC with multiplication
given by composition and where addition is pointwise addition. There is a
natural ring morphism R --+ Rc.

2. Every module M with supp(M) C C has a natural structure as an Rc-module.
The restriction of this structure along the natural map R -f Rc yields the
initial R-module structure on M.

3. Corresponding to each inclusion C C C' of closed subsets of ZgR we have a
commutative diagram as shown.

R RC

I /
Rc'

Proof (1) The operations are given as follows. p + p' is defined by the pp-
formula 3u, v(p(x, u) A p'(x, v) A y = u + v). pp' is defined by the pp-formula
3z(p(x, z) A p'(z, y)) (recall that we're dealing with right modules). The map R -->
RC is that which sends r E R to the class of the formula y = xr. Parts (2) and (3)
are immediate from what has been said above.

Observe that since pp-formulas define our scalars, if M = M' e M" is a decom-
position of R-modules then it is also a decomposition of RM-modules.

Lemma 2.3 The ring of definable scalars for ZgR is precisely R.
Proof Suppose that p(x, y) is a pp-formula defining a function on every right
R-module; say p(x, y) is 3v(x y v)H = 0. In particular, there is some s E R with
R p(l,s); say R = (1 s r)H = 0. Then, for every R-module M and every
m E M we have m.(1 s f)H = 0 that is (m ms mr)H = 0, and so M k p(m, ms).
Hence p defines multiplication by s in every R-module, as required.

Lemma 2.4 Let MR be any module, let S = End(MR) be its endomorphism ring
and let B = End(sM) = Biend(MR) be its biendomorphism ring. Then the ring
RM of definable scalars of M is a subring of B (by an embedding extending the
canonical maps of R to RM and to B).

R B

RM
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Proof Suppose that r E RM is defined by the formula p,(x, y). Let f E S. Then
M = p,(a,b) implies M k p,(fa, fb): that is, (fa)r = fb = f(ar). Thus every
element of RM may be regarded (canonically) as a member of B, as required.

Later we will see some conditions under which this inclusion is an equality.
One source of rings of definable scalars is localisation (see [Ste75] for undefined

terms).

Theorem 2.5 [Pre95] Let r be a hereditary torsion theory of finite type on the
category of R-modules, cogenerated by the injective R-module E. Let T = Th(E0).
Then the ring RT of definable scalars for T coincides with the localisation RT of R
at r.

The above result covers Ore localisation for instance (and so justifies the remarks
relating to the prefer group Zp00 in the introduction). The result follows from (but
also inspires) a more general result, Proposition 4.6, which we will prove below.
We also recall [Ste75] at this point that the localisation R, above can be obtained
as the biendomorphism ring of a suitably large power of the injective cogenerator
E. This result also follows from and inspires one below (Theorem 4.7). The next
result covers Ore localisation but also, for instance, universal localisation (see, e.g.,
[Sch85]).

Theorem 2.6 [Pre96] Let R - S be a ring epimorphism. Then the ring of de-
finable scalars of the module SR is exactly S. More precisely, if C is the closed
subset of the Ziegler spectrum associated to Th(SR) then R - S is isomorphic to
R - RC.

It is easily checked that if R is Z or K[X] (K a field) then one obtains, as rings
of definable scalars, exactly the epimorphisms from R.

Example 2.7 R -+ RC need not be an epimorphism of rings. We will prove
below that if M is a module of finite length over its endomorphism ring then all
its biendomorphisms are pp-definable and hence that its ring of definable scalars
equals its biendomorphism ring. So all we have to do is exhibit a finite-dimensional
module M over an algebra R with the natural map from R to Biend(M) not an
epimorphism of rings.

We may take R to be the algebra K[a, b, c : ab = ac = be = 0 = a2 = b2 = c2]
where K is any field. For the module take the four-dimensional indecomposable
string module M with K-basis x, xa = yb, y, yc.

Since M is indecomposable its endomorphism ring S is a local ring, with S/J(S)
K. In the radical of S we have the radical elements a, b, c of R (which, note,

is commutative) and we also have the element - let us call it d - which sends x to
yc and sends y to 0. A one-line computation shows that the image of x under any
element of S must be contained in xK ® xaK ® ycK and similarly for y. So we
have found a K-basis for S.

So we have S = R[d : d2 = 0 = ad = bd = cd]. Since this ring is commutative
and contains R we conclude that it is also the biendomorphism ring of N. Consider
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the canonical embedding of R into S followed by composition with either of the
morphisms S -* S the first being the identity and the second the map which sends
d to 0 and fixes R. Since the compositions are equal we conclude that R -> S = RN
is not an epimorphism.

It is reasonable to regard rings of definable scalars as localisations in some sense.
For instance, the proof of [Zie84, 5.4] applies to show that, although the ring of
definable scalars at a point (i.e. of an idecomposable pure-injective) need not be
local, at least its centre will be a local ring.

3 Rings of Type-Definable Scalars and Biendomor-
phism rings

Throughout this section we suppose that NR is a right pure-injective module and
let S = End(NR). Our pp-types refer only to sets of pp-formulas, not, as they
are sometimes defined, to sets of pp-formulas together with the negations of some
other pp-formulas.

Definition 3.1 We say that an element c E NI for some set I is a generic
element for N if for each d E N we have ppN' (c) C ppN(d).

So the pp-type of a generic element c E NI is equivalent to v = v modulo Th(N).
The most important property for us is that if NI contains a generic element then
NI is a cyclic module over its endomorphism ring with each generic a generator.
This holds because NI is pure-injective and the pp-type of any element of this
module is an intersection of pp-types realised in N and hence contains the pp-type
of the generic c. We note that the set of pp-formulas 10: Th(N) 0(v) H v = v}
is the pp-type of any generic of N. Finding a generic for a given pure-injective is
easy.

Proposition 3.2 Suppose jai : i E I} is a generating set for N considered as a
left S-module. Then the element (ai)iEI E NI is a generic for N.
Proof Let J C I be finite, d E N and let sj E S for each j E J so that
d = EiEJ sjaj. Then we can define a map f : NI -> N with f : (ai)iEl H d as
follows. Let s E End(NIR) have the action of sj on the j-component of NI for
j E J and the action of the identity map on components not indexed by J. Next
define 7rj : NI - NIJI, which projects NI to the components indexed by J. Finally
let o be the summation map NV I -> N. We then define f to be Q7r js.

We now define the ring Rj of type-definable scalars for the module N. We
take as the elements of RO, those pp-types p(x, y) such that for each a E N we
have N = p(a, b) for some unique b E N, factored by the equivalence relation -N
where pi ^'N P2 if N = pl(a, b) holds precisely when N p2(a, b) does. We
frequently confuse pp-types with the equivalence classes that they lie in. We define
addition and multiplication by using generics for N as follows. Let (ai)iEI E NI
be a generic and let p, q E R. Suppose that the elements di and ei are defined
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so that N = p(ai, di) and N q(ai, ei) which we denote respectively as aip = di
and aiq = ei. Then we define p + q to be ppN'((ai)iEI, (di + ei)iEI) Now suppose
that f : N' -+ N has f : (ai)iEI i 0. Then f : (di)iEj i-4 0 since Op = 0 and
likewise f : (ei)iET 0. Thus f : (di + ei)iE, H 0 and so if N 1 (p + q)(0, d) then
d = 0. Hence p + q E RN R. Multiplication is defined similarly. We define pq to be
ppN'((ai)iEI, (bi)iEI) where diq = bi. Now clearly we have N' = p((ai)iEI, (di)iEI)
and NI = q((di)iEI, (bi)iEi). If N pq(a', b') then we have some map f : NI -> N
with f : (ai)iEI H a', b'. Suppose d' is the image of (di)iEi under f. Thus
a'p = d' and d'q = b' and since p and q are in RN, a'pq = b' is uniquely defined
and so pq E R.

We note that since any two generics for a given pure-injective have the same
pp-type and live in pure-injective modules there are homomorphisms between these
modules which map these elements to each other. This shows that our definitions
of addition and multiplication are independent of the choice of generic.

We next give some simple properties of the ring R.

Proposition 3.3 Let RN be the ring of definable scalars and I be any set. Then

RN C RN = RN, C Biend(NI) C Biend(NR'1) = Biend(NR)

where the identifications and embeddings are the obvious ones.
Proof We prove the inclusions from left to right. First, RN C RN since any
pp-formula p corresponding to a definable scalar clearly defines an element of RN
(given by the pp-type generated by p, the set of all pp-formulas lying above p in
the pp-lattice of Th(N)).

For the first equality, suppose that p E R. Then clearly p E R71 by letting
p act componentwise on NI. We want to show that these are the only possible
type-definable scalars on NI, i.e. we will show that if p E RN, then p acts com-
ponentwise on N' and that the action of p on each component is the same. If
N' = p((ai)i, (bi)iEI) then clearly N = p(ai, bi) for each i E I. Also if N p(c, d)
and N p(c, d') then d = d' for otherwise we would have N' = p(0, (d - d')i) with
d - d' non-zero, contradicting p E RN,. This gives the first equality.

The second inclusion is just a type-definable scalar version of Lemma 2.4. We
have for each a E N' and p E Rn that ap = b if N' = p(a, b) and so for any
s E S = End(NR) we have N' p(sa,sb) and so (sa)p = sb = s(ap). The final
equality and inclusion are text-book results. 0

If NI contains a generic then the second inequality in Proposition 3.3 becomes
an equality.

Proposition 3.4 Suppose that N' contains a generic for N. Then

RN = Biend(N').

Proof Let k E Biend(N'), c E NI be a generic for N and p = ppN'(c,ck).
Then if N' = p(a,b) we have a map f E End(N') with f : c,ck H a, b and
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b = f(ck) = (fc)k = ak. Since c is a generic, p defines a total function. So
p E RN, = Rn, and this association of biendomorphisms with elements of RN, is
clearly the inverse of the embedding Ro C Biend(NI) defined earlier.

Corollary 3.5 For any pure-injective module NR there exists a set I with Rn, _
Biend(NI).

Proposition 3.6 If NR is finitely generated over its endomorphism ring then
Rn, = Biend(NR). If T = Th(NR) is totally transcendental then RN = R.
Hence if both these conditions hold then RN = Biend(NR).
Proof If Jai : i < n} is a generating set for SN then (ai)i<n E Nn+1 is a generic
for N and Biend(Nn+1) = Biend(NR). The second assertion follows from the fact
that every pp-type consistent with a tt theory T is finitely generated modulo T so
that RN = Rn, in this case.

In fact when both conditions of Proposition 3.6 hold one may write down ex-
plicitly the formula which defines a biendomorphism. For, if e E Nk is a generating
(so generic) sequence for the tt module NR over its endomorphism ring, if g is a
biendomorphism of N and if 8(i, w) is a pp-formula which generates the type of
(c, cg) modulo the theory of N then one may check that the formula p(u, v) which
is

3X1, ..., xk, yl, ..., yk(u = Exi A v = Eyi A ...

/ \ 3zil I ..., zik, will ..., wike(zil i ..., xi, ..., ziki will ..., yi, ..., wik))

defines the action of g on N.
By essentially the same argument one may show that if M is a finitely presented

R-module which is finitely generated over its endomorphism ring then the ring of
definable scalars for M again coincides with its biendomorphism ring. All that is
needed is that every pp-type realised in M is finitely generated modulo the theory
of M together with the injectivity property that if ppM (c) C ppM(a) then there is
an endomorphism of M taking c to a (for the fact that finitely presented modules
have these properties see [Pre88b]).

We close this section by noting that the rings of definable scalars of two pure-
injectives may be equal, while their rings of type-definable scalars can be at the
opposite extremes allowed by Proposition 3.3. [Her93, Corollary 6.3] tells us that
for any ring R and complete theory of left R-modules T we have that RT = RDT
where DT is the dual theory of T (the definition of the theory of right R-modules
DT can be found in [Her93]). Let R = Z and again consider the Ziegler-rank 1
modules Zp00 and Z(p). We know, from Theorem 2.5, that RA(P) = Z(p) and since

D(Th(Z(p))) = Th(Zp-) we have R5P0. = Z(p) also. By Proposition 3.6 since Z,-
is tt we have Z(p). However, for Z(p) there are type-definable scalars that
are not definable by a pp-formula and in fact the type-definable scalars make up
the whole biendomorphism ring Z(p). To see this we represent an element a of
the ring Z(p) as a sum of the form EnEuap' where the an are representatives of
equivalence classes of Z modulo the ideal (p). Every element of Biend(Z(p)) is given
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by multiplication by an element of Z(,) and the relation v = wa where a E Z(r) is
defined by the Z-pp-type

Qa = {pl v - wao, p2I v - w(ao + aip), p3I v - w(ao + aip + a2p2). .....}

and so R°° = Biend(Z1Pl) = Zlpl.
Z(r)

In Section 2 it was shown that the ring of definable scalars could be defined
on closed sets of the Ziegler Spectrum. In a similar way we can define the ring
of type-definable scalars for any closed set of the "Types over Formulas" topology
defined in [Bur94J. This topology has the same points as the Ziegler Spectrum but
in this case a basis of open sets is defined in terms of types modulo sorts (defined at
the end of Section 1) rather than by pp-pairs. The closed sets of this topology turn
out to be precisely those subsets of Z9R which are closed under indecomposable
direct summands of direct products.

4 Scalars in other sorts and Endomorphism Rings of
Localised Functors

At least from the model-theoretic point of view it would be rather limiting to
consider definable scalars only in the home sort. So here we generalise the previous
discussion to arbitrary pp-sorts and we also show that the rings so obtained are
exactly the endomorphism rings of localisations of finitely presented functors.

First we say what we mean by pp-sorts. Let M be any module and let 0
be pp-formulas in n (say) free variables. Then MOA'N' = O(M)10(M) is a group - a
slice of Mn. By pp-elimination of quantifiers, all the structure on M is definable in
terms of pp-formulas and every such pp-formula O(v) induces a relation on M"/'':
given 0 introduce a relation symbol RB of sort 0/0 such that M ON R0(b) if
there is a tuple a in M with b = aV, and M = 0(a) (the notation a,p is shorthand
for the coset a + O(M) of 4(M)/O(M)). We will generally understand M'N to
mean the group O(M)/ b(M) with this full induced structure (see [KuPr92] for
more detail). Within this structure there will be some binary relations which are
total and functional - these form a ring under addition and composition and we
refer to this as the ring of definable scalars of M in sort 4/0 writing
This ring depends only on the support C of M and so we may also write RcN'

There are two important points to be made about this in comparison with the
ring RM of definable scalars in the home sort. The first is that, since pp-formulas
define subgroups and not submodules, in general the ring R does not act on M16/`'
(although the centre of R does - therefore there is a ring morphism from it to
R"10). The second is that the RM''-module structure on O(M)10(M) may not be
rich enough to define the full induced structure (see the example below): so there
may well be endomorphisms of the RNj '-module O(M)/'(M) which do not preserve
the full induced structure. In particular, when we write End(M'/'1) we will
mean the abelian group endomorphisms of MON which preserve the full induced
structure (as opposed to the possibly larger ring of endomorphisms).



196 K. Burke, M. Prest

Example 4.1 Let R be the path algebra over a field K of the quiver A2 with
the arrow pointing from vertex 1 to vertex 2. Let M be the direct sum of the
indecomposable module of dimension type (1, 1) and the module of dimension type
(0, 1). Let e2 be the idempotent corresponding to the second vertex, let ¢(v) be the
formula vet = v and let i,b(v) be the formula v = 0. Then M'" is isomorphic
to K e K as a K-vector space. The full induced structure on O(M) includes a
predicate which defines ¢((1,1)) - since this is the image of M under multiplication
by an element of R. But it is easy to check that the ring R01 is just the field K -
so the full induced structure is strictly richer than the structure as a module over
the ring of definable scalars in that sort.

Similarly we have the concept of a ring of type-definable scalars in an arbitrary
sort. We say that an element c.,p E N, is a generic for N'"' iff c EO(N) and
ppN'(c,,) C ppN(d,) for every dV, E NON'S (equivalently ppN'(cV,) 00 modulo
Th(N)). We can think of ppN(d,p) as the set of those 0 such that N (0+?i)(d) or
equivalently as the set of formulas 0'(x,,) in the free variable x0 in the sort 0/0 such
that N = 0'(d,y). We take as the elements of (RN)t/'1' those pp-types p(x, , yo)
such that for each a,1, E N'/0 we have N [= p(a ,, b ,) for some unique b, E q(N ,),
factored by the equivalence relation ^'N where pl ^'N P2 if N pl(av,, b,1,) holds
precisely when N k p2(a,1, b v,) does for all a.,, b, E O(N,,). Again we will confuse
pp-types with the equivalence classes that they lie in. Addition and multiplication
in this ring are defined using generics (only this time using generics in the specified
sort) in precisely the same way as in the definition of R.

The following result, which is folklore, relates the endomorphism ring of a pure-
injective module N to that of NON'S.

Proposition 4.2 Suppose that N is a pure-injective module and let 0/0 be a sort.
Then the natural morphism EndN -> End(01''1') given by restriction is a surjec-
tion.
Proof Since every endomorphism preserves pp-formulas, endomorphisms of N
restrict to endomorphisms of NON'S'. To show that this restriction is surjective, enu-
merate NON as do for some (perhaps infinite) tuple a in N. Let g E End(NtI'1)
and choose an inverse image, b, of ga. with maximal pp-type (since N is pure-
injective, this pp-type is realised in N). We claim that pp(a) C pp(b).

Suppose then, that we have 0(a), hence RB(a') and so RB(ga.,). Then there is
c with E0 = b,o and 0(c). From b(ci - bi) for each i we have, in the notation of
[KuPr92, p.708] 0'1(b) and hence, by maximality of pp(b) and [KuPr92, p.716] we
deduce 0(b), as claimed. Therefore there is an endomorphism of N taking a to b:
the restriction of this endomorphism to N010 is g. 13

One may, following Herzog [Her93], define the category Mod - Req of definable
scalars. The objects are the pp-sorts, 0/0, and the morphisms are the pp-definable
morphisms between sorts. So if M is such that supp(M) = ZgR then the ring of
definable scalars of M in sort '/0 is just the endomorphism ring of the sort 0/0
in this category. In fact, the same comment applies to any module if we replace
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the category of definable scalars by a suitable localisation of it. To explain this we
discuss very briefly (for a fuller account, see [Bur94] or [Pre93]) the realisation of
Mod - Req as a category of functors.

Denote by (mod - R, Ab) the category of functors (always we mean additive
functors) from the category mod - R of finitely presented right R-modules to the
category Ab of abelian groups. Then the category of definable scalars is equiva-
lent [Bur94] to the category (mod - R, Ab)fP of finitely presented such functors,
with the sort 0/,0 corresponding to the functor Fold (which takes a module M to
q(M)/'(M) and has the obvious action on morphisms). In particular, the mor-
phisms between finitely presented functors are all given by pp-formulas. So we
may regard the global ring R0/1 of definable scalars in sort ¢/?I' as the opposite of
the endomorphism ring of the functor F,/,p E (mod - R, Ab)fP. There is a duality
(mod - R, Ab)fP = ((R - mod, Ab)fP)OP between the categories of finitely presented
functors on right and left finitely presented modules, which takes the typical finitely
presented functor FFf,,1, to its dual FDOIDO. Here Do is the dual of the pp-formula
0 ([Pre88a], [Her93]). For various reasons, such as the fact that M M ® - gives
a nice embedding of Mod - R into (R - mod, Ab), it is often convenient to take
(R - mod, Ab)fP as the functorial version of "eq+". Then the global ring RI/"' of
definable scalars in sort 0/0 will be the endomorphism ring of the functor FD,G/Dj.

Thus, for any module M, Meq+ becomes a right "module" over (R- mod, Ab)fP:
namely the functor from ((R - mod, Ab)fP)°P to Ab which takes FDVIDm to

(FDV,IDO, M ®-) - O(M)IO(M)
(see, for example, [Pre93]). It is easily checked that the natural structure that
O(M)/zb(M) carries in this isomorphism, as a right M/0-module, coincides with
the RO/0-module structure induced by the isomorphism (from the fact that RO N
End(FDV,IDO)).

We will see below that the "local" rings RNj'1 of definable scalars may be ob-
tained as endomorphism rings of certain functors. We will also realise them as
biendomorphism rings.

Now we give a very brief account of the role of localisation (again see [Her94],
[Kra94], [Pre95] for more detail).

There is a bijective correspondence between the closed subsets of the Ziegler
spectrum and the hereditary torsion theories on (R - mod, Ab) which are of finite
type (= the torsion functor commutes with directed limits). If supp(M) = C then
the localisation of (R - mod, Ab)f P at the torsion theory r corresponding to C is
equivalent to the category of definable scalars for the theory of M.

Similarly there is a bijection between the closed subsets in the "Types over
formulas" topology (see [Bur941) - a refinement of the Ziegler topology - and those
hereditary torsion theories on (R - mod, Ab) which are cogenerated by sets of
indecomposable injectives.

The fact that any torsion theory on (R - mod, Ab) of finite type is cogenerated
by a set of indecomposable injective functors is just [Zie84, 6.9].

An R-module N is pure-injective if the functor N ® - in (R - mod, Ab) is
injective. The functor N ® - may not cogenerate a torsion theory of finite type
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(see example below): if it does then this will be the torsion theory corresponding
to supp(N) and then we say that N is an elementary cogenerator. One has the
following ([Pre88b], [Pre95]).

The pure-injective module N is an elementary cogenerator if every model of
Th(N) purely embeds in some power of N if N realises every 1- type which is
neg-isolated in Th(N).

Let N be a pure-injective R-module which is weakly saturated, IRI+-saturated
or totally transcendental (=E-pure-injective). Then N is an elementary cogen-
erator. In particular, every module is elementarily equivalent to an elementary
cogenerator.

We therefore obtain the following corollary of Corollary 3.5.

Theorem 4.3 Suppose that N is an elementary cogenerator. Then there is a power
NI of N such that the ring of definable scalars of N coincides with the biendomor-
phism ring of NI.

Example 4.4 The torsion theory cogenerated by an arbitrary tensor functor may
be strictly smaller than the corresponding torsion theory of finite type. Let R = Z
and consider the torsion theory cogenerated by Z(p) ® - . The injective Q 0 - is
not torsionfree for this torsion theory - otherwise it would be a direct summand
of a product of copies of Z(p) ® - and hence Q would be a direct summand of
a product of copies of Z(p) which is not the case (use that Q is divisible). But
Q ® - is torsionfree for the smallest finite type torsion theory for which Z(p) ® -
is torsion-free since Q is in the Ziegler closure of Z(p).

The ring (Rn, )'I exists in the functor category (R - mod, Ab) as the endo-
morphism ring of an object that we will specify using torsion theories. Before
showing this we look at another way of viewing generic elements c for a pure-
injective N. Let T be the torsion class of the torsion theory cogenerated by the
functor N OR - so that T is the localising subcategory of (R - mod, Ab) generated
by {X : (X, N OR -) = 0}. There is a corresponding torsion functor r which
maps each object F to its largest subobject in T, rF. We let QN be the quotient
functor QN : (R - mod, Ab) -> (R - mod, Ab)/T and denote (given 0) by cp ® -
the natural transformation FD1IDm --j N OR - which takes the element aDo where
aEDb(M)to c0aEN®RM.

Lemma 4.5 Let c E NI for some set I. Then c, is a generic for N'/''1 iff QN(c,,®
-) is a monomorphism in (R - mod, Ab)/T. In this case the kernel of (ce, 0 -) is
rFD.,ID ,

Proof Let K be the kernel of the map c, ®- : FD,IDm -> NI OR -
which may be written [Pre88b, 12.1] as EFDoIDO for some pp-formulas DO. Now
FDOIDO < K if c., 0 aD.5 = 0 in NI OR M for every a E DO(M) with M E R - mod.
But since c,,, is a generic element for N16/0 we have d p ® aD, = 0 in N OR M so
that d ® a = 0 for all d EO(M) and so (FDOIDl,, N OR -) = 0, FDOID4, E T and
so K E T. Now K = TFDOIDO since FDPIDm/K is trivially T-torsion-free and
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in particular QN preserves the embedding of FD,pIDm/K into NI OR - [Pop73,
Chapter 4 Section 51-

(.t=) If we suppose that QN(c,p ® -) is a monomorphism then the kernel K of
c,,®- lies in T. Hence if NI k O(c,,) then FD9ID,5 < K and (FDBID,5,N®R-) = 0
and so N k O(d,p) for all d E N. Thus c,1 is a generic element for N010.

Proposition 4.6 Let F = FDpIDt,. Then (Rn,)t/''' = End(F,) where FT, the
localisation of F at r is the largest subobject of the injective hull of FIrF such that
QN(FT) = QN(F/TF).
Proof Let N, contain a generic for N0I1p. Since NI OR - cogenerates the same
torsion theory as N ®R - and since (RN )t/'p = (by an easy modification
of the proof of Proposition 3.3) we may assume that No contains a generic c,p for
itself. Now the functor E = N OR - is injective and torsion-free so we have

(F, E) = (F/rF, E) = (FT, E) (1)

where the identifications are the obvious ones given by the diagram

F - F/rF ` FT

\I/
So we can think of q/ b(N) as having a left-S, right-End(FT) bimodule structure

where S = End(NR). We also notice that by Lemma 4.5, the map co ® - F E
induces an embedding of FT in E.

We define a map a : End(FT) -> (Rn, )9'/ ' by taking h E End(FT) to the type q
where q = ppN(c,p, cph) and c,ph is the element of N010 such that c,,h® - F - E
defines the composition

hF -F/rF FT h FTC E.

To see that q E (RN I)010, suppose that N,, q(c,p, b,p) so that N,p k q(00, c,ph-
b,p) and let g E S with g : c,p, c,ph Op, c,ph - b,p. Then g.c,ph = gc pS2.h = O,p and
so c,ph = b,p.

Finally we need to show that a defines an isomorphism of rings. To show that it
defines a homomorphism let ah = p, ah' = p' so that cop = c,ph and cop' = c,ph'.
Suppose that g E S is such that g : c,p H c,ph. Then c,ppp' = c,ph.p' = gc,p.p'
= g.c,pp' = g.c,1h' = gc p.h' = c,phh'. The other properties are easy to prove. That
a is a monomorphism is also clear so we need only prove that it is onto.

Now since E is an injective cogenerator of r we have FT = fl {Ker(f) : f
E(FIrF) -+ E with f(FIrF) = 0}. We let p E (Rn,)#I'p and look for a map h in
End(FT) with the same action as p. Suppose that g E End(E) = End(NR) maps
the image of c,,®- : F/rF y E to 0. This implies that the map g(c,p(D-) F - E
is zero by identification (1) and so gc,, = Op (thinking of g E S). So we have g.c,pp =
gc,p.p = Op and thus the image of F/7F under the transformation c,pp 0 - is a
subfunctor of FT by the description of FT as an intersection of kernels given above.
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Also since E is torsion-free, the image of an extension h of c.pp ® - to F, in the
identification (1) is a subfunctor of F,. So we have that cvp®- is the composition

F/rF c F,
h F, ( E.

Therefore cvp and a(h) = p. This completes the proof.

We recall (see [Ste75]) that the localisation of a ring at the torsion theory
cogenerated by an injective E can be obtained as the biendomorphism ring of
some power of E (which also, of course, cogenerates the same torsion theory).
Bearing in mind that a module is pure-injective if the corresponding tensor functor
in (R - mod, Ab) is injective we arrive at a corresponding description (noticed
independently by Henning Krause) of the ring of (type-) definable scalars.

Theorem 4.7 Let N be pure-injective and let ¢/,0 be any sort. Then there is a
power I such that the ring of type-definable scalars of N in sort ¢/0 is equal to the
endomorphism ring of (NI)"l'I' regarded as a left module over the endomorphism
ring of N.

To outline the proof of this, let T be the torsion theory cogenerated by N ® -
in (R - mod, Ab). Replacing N by a power NI if necessary, we can and will assume
that N contains a generic element of sort 0/0 so that T remains unchanged. We
have that the natural morphism EndN - End(N0'1') given by restriction is a
surjection by Proposition 4.2. One may check that the proofs of Corollary 3.5 and
Theorem 4.3 work just as well in this more general context.

Corollary 4.8 Suppose that N is an elementary cogenerator and q5/0 is a sort.
Then there is a power I such that the ring of definable scalars of N in sort 0/?,b is
equal to the endomorphism ring of (NI)''l''' regarded as a module over EndN.

Corollary 4.9 Suppose that N is an elementary cogenerator and 0/0 is a sort
such that the ROI0-structure on N0/0 induces the full structure on N'l''1'. Then
there is a power I such that the ring of definable scalars in the sort 0/0 for N is
the biendomorphism ring of (NI)m/' where this is regarded as a module over RmN.

Wilfrid Hodges has pointed out that Corollary 4.9 may also be obtained using
Svenonius' Theorem.
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Recent Results on Simple First Order Theories

Byunghan Kim

This paper summarizes the main results of [8], [9] and some facts from [12]
with condensed proofs.

The study of simple theories began with Shelah's paper "Simple unstable the-
ories" [12] where he introduced a class of first order theories, he called simple,
having D(p, A, k) rank. The class includes all stable theories and some unstable
theories. His intention was to ask whether we can build a theory of simple theories
analogous to stability theory.

Remarkable progress in the study of simple theories has been made very recently
after Hrushovski and others developed notions of independence in specific unstable
structures such as pseudo-finite fields ([5], [6]), fields with an automorphism ([3])
and smoothly approximable structures ([4], [7]). The independence notion in each
of these unstable structures behaves similarly to nonforking in stable structures.
Hence we may ask naturally the following questions in connection with simple
unstable theories.

(1) Are all unstable structures mentioned above simple ?
(2) If so, then "what is the relation between the independence notion and non-

forking?"
(3) Does any simple theory have a similar notion of independence?
It turns out that the answer to (1) is positive and the independence notion

in each unstable structure above is exactly nonforking. Furthermore nonforking
supplies a notion of independence to all simple unstable theories as well as to
stable theories, primarily by the following theorem.

THEOREM (B. Kim) [8] If T is simple, then the following hold.
(i) Let p be a type, and let A be a set. Then p divides over A if and only if p

forks over A.
(ii) Nonforking satisfies symmetry and transitivity.

In this paper we shall describe the proofs of the preceding theorem and ad-
ditional results with almost no prerequisites except compactness and Ramsey's
Theorem. The approach here is slightly different from [8]. However, the aim of
this paper is not to suggest new results or proofs but to guide the readers who
want to understand simple theories quickly. Hence we state weaker (but simpler)
versions of lemmas from [8], [9] and [12] if they suffice for yielding the main results
in each section of this paper.

We use standard notation. T is a complete theory in a first order language
L. p denotes a consistent type, perhaps partial, unless stated otherwise. We work

202
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in a huge R-saturated model C as usual. Sets A, B, C, ... are subsets of C and
models M, N, ... are elementary submodels of C whose cardinalities are strictly
less than R. An A-automorphism is an automorphism of C fixing A pointwise. If
p(x, do) is a type over Ado and tp(ao/A) = tp(ai/A) then p(x, al) is the image
of p(x, do) under an A-automorphism taking do to al. Recall that a sequence
I = (ciji E w) is an A-indiscernible sequence (of p E S(A)) if for each n E w,
tp(Eia,..., tp(EO,..., en/A) for each io < ... < in < w (and eo = p). For a
type p over a set B, pJA denotes a restriction of p to A(C B). There will be no
unstated assumptions for T. For example, Fact 1.3. is true for any theory.

We wish to thank Anand Pillay for permitting us to present his work from [9].

§1. Stability, dividing and forking

A first order theory T is unstable if there are a formula cp(x, y) of L and a
sequence (aiI i < w) of tuples such that for all i, j < w, k (p(ai, ai) if and only if
i < j. T is stable if it is not unstable.

Many well-known algebraic structures are stable, such as algebraically closed
fields, differentially closed fields, vector spaces and modules and so on. On the
other hand, real closed fields and pseudo-finite fields (see [61) are unstable.

One of the reasons why model theorists have been interested in stability theory is
that there is a notion of nonforking which yields a uniform concept of independence
in any stable structure. ( See Fact 1.4.) For example, nonforking characterizes
linear independence in vector spaces and algebraic independence in fields.

DEFINITION 1.1. A type p divides over a set A with respect to k E w, if there
are a formula cp(x,e) and a sequence (ciIi E w) such that

0) p i- (x, e)1
(ii) tp(c/A) = tp(ci/A) for all i,
(iii) ei)Ii c w} is k-inconsistent, i.e. any finite subset of size k is inconsis-

tent.
p divides over A if p divides over A with respect to some k.
p forks over A if there are formulas cpo(x, do),-, (pn(x, an) such that

G) P F Vo<i<n ai),
(ii) Vi(x, d ) divides over A for each i.

REMARK 1.2. From the definitions of dividing and forking, we easily obtain
the following.

(i) p(x, e) divides over A if and only if there is an A-indiscernible sequence I of
tp(E/A) such that E I} is inconsistent. ( Use Ramsey's Theorem.)

(ii) yo(x, e) divides over A w.r.t. k if and only if for all finite a C_ A, y(x, e)
divides over a w.r.t. k. ( Use compactness.)

(iii) If p divides over A, then p forks over A.
(iv) If p divides (forks) over A and p g q, then q divides (forks) over any subset

of A.
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Intuitively dividing is the right notion of dependence. Suppose that tp(b/Ac)
divides over A. Then we may interpret this as: the set X of realizations of tp(b/Ac)
breaks up that of tp(b/A) into infinitely many pieces Xi, each of Xi is an A-
automorphic image of X. This means in some sense that b satisfies more relations
with Ac than it does with A.

Why, then is forking introduced as well as dividing? With forking, we have the
following Extension axiom which is quite useful in developing arguments. Moreover
forking turns out to be dividing for stable T.

FACT 1.3. Let A C B C C. If p in S(B) does not fork over A, then there is
an extension q of p in S(C) such that q does not fork over A.

FACT 1.4. If T is a stable theory, then nonforking has the following properties.
(1) p does not fork over A if and only if p does not divide over A.
(2) (i) (Symmetry) tp(clAb) does not fork over A if and only if tp(b/Ai) does not
fork over A.

(ii) (Transitivity) Let A C B C C. Then tp(a/C) does not fork over A if and
only if tp(al B) does not fork over A and tp(a/C) does not fork over B.

(iii) (Extension) Fact 1.3.
(iv) (Local Character) For any complete type p over B, there is a subset A of

B such that IAA < ITS and p does not fork over A.
(v) (Finite Character) Let A C B. Then tp(a/B) does not fork over A if and

only if for each finite tuple b E B, tp(alAb) does not fork over A.
(vi) (Boundedness) Let A C B. For any complete type p over A, there are at

most 21TI many extensions of p in S(B) which do not fork over A. If A is a model,
then there is a unique nonforking extension.

Moreover if, in a theory T, an autornorphism-invariant relation between com-
plete types and sets satisfies all the preceding axioms, then the theory is stable and
the relation has to be nonforking.

The properties listed in Fact 1.4. do not all hold in general, if T is not stable.

EXAMPLE 1.5. (1) Let T be the theory of the ternary relation R(x,y,z)
defined on the circle C as follows. R(x, y, z) holds if and only if x, y, z are points
on C (x, z are not diametrically opposed points), and y lies on the shorter arc from
x to z. Now

x = x H R(ao, x, al) V R(al, x, a2) V R(a2i x, ao)

for some ai's in C such that R(ai, x, ai) divides over 0. Hence x = x forks over 0
but does not divide over 0.

(2) Assume that (M, <) is a dense linear ordering without endpoints. It can
easily be checked that forking is dividing in this structure. However symmetry
fails. Let a < b < c. Then tp(blac) divides over 0 witnessed by a < x < c whereas
tp(ac/b) does not divide over 0.
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§2. Simple theories

DEFINITION 2.1. T is simple if nonforking satisfies the Local Character axiom,
i.e. for any complete type p over B, there is a subset A of B such that Al J< ITS
and p does not fork over A.

The typical example of a simple unstable structure is the random graph. A
variation of the random graph, the so called bipartite random graph, is also worth
mentioning. A bipartite random graph consists of two disjoint infinite subsets, say
U, V with a binary relation R between U and V. For any finite disjoint subsets
X and Y of U, there is z E V such that xRz for x E X and -yRz for y E Y, and
vice versa. We shall see more algebraic simple unstable structures at the end of
this paper.

For any stable theory, nonforking has Local Character. Hence any stable theory
is simple. Also the definition yields the next lemma.

LEMMA 2.2. If T is simple and p E S(A), then p does not fork over A.

DEFINITION 2.3. Let A C B and P E S(B). By a Morley sequence of p over
A, we mean a B-indiscernible sequence I = (ai : i E w) of p such that for every
i E w, tp(ai/B U U{ajJj < i}) does not fork over A .

By a Morley sequence of p E S(B), we mean a Morley sequence of p over B.

PROPOSITION 2.4. If p E S(B) does not fork over A(C B), then there exists a
Morley sequence of p over A. Thus for simple T, a Morley sequence of a complete
type exists.

Proof. For any cardinal A, Extension (Fact 1.3.) guarantees the existence of a
sequence (a,Ia < A) such that for every a < A, tp(aa/B U U{ap1i < a}) extends
p and does not fork over A. We can extend the sequence as long as we want,
but there are only boundedly many types over B. Hence using the Erdos-Rado
Theorem repeatedly (plus some techniques (cf. [2, Theorem 7.2.2.])) we obtain the
desired indiscernible sequence from a huge A-sequence.

Main theorems

The following lemma plays a crucial role in proving the main proposition 2.7.

LEMMA 2.5. Let I = (ci : i E w) be a Morley sequence of tp(co/A) and
J = (cj : j E w) an A-indiscernible sequence of tp(co/A). Then there is a sequence
I', an A-automorphic image of I, such that (c2) I' is an A-indiscernible sequence
for each j < w.

Proof. Suppose that b1i ..., bn have been chosen so that
(i) tp(Obl...bn/A) = tp(coc1...cn/A) for every j < w,
(ii) J is Abi ...b,,-indiscernible.
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Let us find bn+l so that (i), (ii) hold for n + 1. First we shall show

U{p(&I,bl,...,bn,tn+l)I7 <w} = q

is consistent where p(xo,xl,...,xn+l) = tp(cocl...cn+l/A). Let

F = {4P(cj, bl, ..., bn, xn+l, aW < w}

for given V(xo, xl, , xn+l, a) E p(xo, , xn+l) with a C A. Since
does not divide over A and (cjbl...bnlj < w) is A-indiscernible, F is consistent.
Hence q is consistent. Using Ramsey's Theorem we can select a tuple bn+l satisfying
q such that J is Abl...bnbn+l-indiscernible. Now (bnll < n < w) is a desired
sequence F.

That Iis a Morley sequence is essential in Lemma 2.5. For consider the following
example.

EXAMPLE 2.6. Let T be the theory of an equivalence relation E with infinitely
many infinite equivalence classes. Let p be a unique complete one type over 0 in T
and Ian indiscernible sequence of p in the same equivalence class. If J = (cili E w)
is an indiscernible sequence of p such that = -'ciEcj for each i # j E w, then there
is no copy of I which is a common extension of all ci's.

PROPOSITION 2.7. If T is simple, then the following are equivalent.
(i) cp(x, e) divides over A.
(ii) yp(x, c) forks over A.
(iii) For any Morley sequence I of tp(c/A), {c (x, c')Jc' E I} is inconsistent.
(iv) There exists a Morley sequence I of tp(c/A) such that c')Ie' E I} is

inconsistent.

Proof. Obvious.
(i)-(iii) Assume that a Morley sequence I = (cn : n E w) of tp(c/A) is given.

We claim that p(x, co) divides over A U U{c,n10 < m} with respect to some k.
Now since cp(x, co) divides over A w.r.t. some integer k, there is an A-indiscernible
sequence (ej : j < w) with co = co such that {y (x,cj)jj < w} is k-inconsistent.
Now we need Lemma 2.5. by which there is an A-automorphic image 1' of I such
that tp(cjI'/A) = tp(I/A) for all j < w. This shows, simply by the definition of
dividing, that o(x, co) divides over AF w.r.t. k, hence so over A U U{cn,.I0 < m}
w.r.t. k.

Let us continue to prove (i)-+(iii). Suppose that p = {cp(x, cn) I n < w} is con-
sistent. Then the preceding claim and Remark 1.2.(ii), together with compactness,
yield a sequence (caJa < ITI+) (reversing the order of Land extending it.) such that
p' = {p(x, c')1a < ITI+} is consistent and W(x, c'.) divides over A U U{c'QI/3 < a}
for each a < ITI+. This contradicts the simplicity of T by an easy argument.

(ii)-+(i) Since cp(x, e) forks over A, there are Oi(x, bi) (0 < i < r) such that
V(x, c) - V i<, O2(x, bi) and for each i, Oi(x, bi) divides over A w.r.t. some ki.

Let d = bo...br and I = (cndnln E w) be a Morley sequence of tp(cd/A) with
codo = cd. We first claim that cp(x, co) forks over A U U{cn,,10 < m}. For a given i
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(0 < i < r), by Ramsey's Theorem, we may assume that there is an A-indiscernible
sequence (eidilj < w) where °d° = ed, di = bo...bi. such that {,0i(x,b=)Ij < w} is
ki-inconsistent. Now, as in the previous proof of Lemma 2.5. enables us
to show that z/i1(x, bi) divides over A U m} w.r.t. ki.

Finally, if J(p(x, en)I n < w} is consistent then again similar argument to the
preceding proof leads to a contradiction. Hence cp(x,c) divides over A. 0

Proposition 2.7. says forking is equivalent to dividing for simple T. Moreover
it says for simple T, in order to make sure that cp(x, e) does not divide over A,
it suffices to check that E I} is consistent for an arbitrary Morley
sequence I of tp(c/A). This property essentially produces symmetry and transitivity
of forking as the reader will see.

EXAMPLE 2.8. Simplicity of T is essential in 2.7. For consider a dense linear
ordering (M, <) without end points. It is not simple. Let a° < bo in M. Choose
sequences ...a2 < al < a° and b° < bl < b2 < ..., then ((an, bn)I n E w) is a
Morley sequence of tp((ao, b°)/O). Now {an < x < b,, I n E w} is consistent whereas
a° < x < b° divides over 0.

THEOREM 2.9. If T is simple, then nonforking satisfies symmetry and transi-
tivity.

Proof. (i) (Symmetry) Suppose that tp(b/Ac) does not fork over A. We want
to prove that tp(c/Ab) does not fork over A. Now there is a Morley sequence
I = (bili E w) of tp(b/Ac) over A where b° = b (by 2.4.) It is easy to check that I
is a Morley sequence of tp(b/A). Hence by 2.7., it suffices to show that for given
cp(x, a, b) in tp(c/Ab) with a E A, {cw(x, a, bi)Ii E w} = p is consistent. But by
Ac-indiscernibility of I, e realizes p.

(ii) (Transitivity (1.4.(ii))) (->) Holds for any T.
(#-) By symmetry it suffices to show that for given e E C, any a) (with

d E A) in tp(c/Aa) does not fork over A. Hence again by 2.7. it is enough to obtain
a Morley sequence (aiIi E w) of tp(a/A) with a° = a such that {VI(x,d,ai)Ii E w}
is consistent. We note that a Morley sequence I = (aiji E w) of tp(a/B) over A
with a° = a is a desired sequence, by 2.7. and the fact that tp(e/Ba) does not fork
over B. O

§3. Rank and forking

We introduce the D(p, A, k) rank which expresses simplicity and forking. (3.3.,
3.5.)

DEFINITION 3.1. Let A be a finite set of formulas in L, and let k be a positive
integer. For any type p, D(p, A, k) (either a natural number or oo) is defined by
induction as follows;

(i) D(p, A, k) > 0 for any consistent type p.
(ii) D(p, A, k) > n + 1 if there are p(x, 9) in A and tuples {aiI i < w} such that

D(p U {cp(x, ai)}, A, k) > n for each i < w, and {cp(x, ai) I i < w} is k-inconsistent.
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(iii) D(p, A, k) = n if D(p, A, k) > n and D(p, A, k) n + 1.
(iv) D(p, A, k) = oo if D(p, A, k) > n for all n E w.

The basic properties of the rank D(p, A, k) are as follows.

LEMMA 3.2. (i) Let a type p over a set A, finite A, k be given. Then
D(p, A, k) > n + 1 if and only if there are an A-indiscernible sequence (aili < w)
and p(i, y) E A such that D(p U {yo(x, do)}, A, k) n and {So(x, ai)I i < w} is
k-inconsistent.

(ii) D(pi, A,, ki) < D(p2, A2, k2) if P1 I- P2, Al c A2, and kl < k2 .
(iii) For every p, A, k, there is a finite subset q of p such that D(p, A, k) _

D(q, A, k)
(iv) For each finite A, we can find a formula y) E L such that for every

type p, and every k, D(p, A, k) = D(p, )(x, y), k) .
(v) D(pU {Vi<n Wi(x, ai)}, A, k) = Max i<nD(p U {<pi(x, ai)}, A, k) .
(vi) Let A, k be given. For each type p over A, there is an extension p' E S(A)

of p such that D(p, A, k) = D(p', A, k).
(vii) If P E S(B) forks over A(C B) witnessed by Oi(x, bi) and ki (i = 0,..., r),

then D(p, A, k) < w implies D(p, A, k) < D(pJA, A, k) where A = {0i(x, bi)Ji =
0,..., r} and k = Max{kili = 0,..., r}.

LEMMA 3.3. The following are all equivalent.
(i) T is not simple.
(ii) There are a sequence of sets (Anti E ITI+) with Ai C Aj for i < j, and a

complete type p over U{Aili E ITI+} such that pIAi+1 forks over Ai for all i E ITI+.
(iii) There is a complete type p over a set B such that for any subset A of B

with Al J< DTI, p divides over A.
(iv) There are a sequence of sets (Aili E ITI+) with Ai C A3 for i < j, and

a complete type p over U{AiIi E ITI+} such that pJAi+1 divides over Ai for all
i E ITI+.

(v) There are p, W(x, y), k such that D(p, cp(i, y), k) = oo.
(vi) T has the tree property, i.e. there exist a formula cp(x, y), an integer k

and tuples ca with a E w<W such that for any a E w<W, {cp(x,c«--n)Jn E w} is
k-inconsistent, whereas {cp(i,cQ1n)In E w} is consistent for all,3 E wW.

Proof. (iii)«->(iv), (v)->(vi)-+(iv)-+(ii) Left to the reader.
(ii),(v) By Lemma 3.2.(vii),(iv) and the fact ILI = ITS. 0

Lemma 3.3. says that T is simple if and only if D(p, A, k) is defined for any
p, finite A, k. Furthermore it says T is simple if and only if T satisfies the Local
Character axiom for nondividing. This fact does not automatically follow from the
fact that forking is dividing for simple T.

LEMMA 3.4. The following are equivalent.
(i) tp(c/Ab) does not divide over A.
(ii) For any A-indiscernible sequence I with b E I, there is a tuple c' realizing

tp(c/Ab) such that I is an Ac'-indiscernible sequence.
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Proof. (ii)-(i) By the definition of dividing.
(i)-*(ii) Let p(1, 6) = tp(e/Ab). Then since p(x, 6) does not divide over A, it can

easily be shown that q = U{p(x, b')Ib' E I} is consistent. Moreover using Ramsey's
Theorem, we can select a tuple e' realizing q such that I is Ac'-indiscernible.

PROPOSITION 3.5. Let T be simple. p E S(B) with A C B. Then p does not
fork over A if and only if D(p, O(x, y), k) = D(pI A,y), k) for every O(x, y) E L
and k E W.

Proof. (-) Lemma 3.2.(vii).
(-f) We may assume that B = Ab with finite b. Let us suppose D(pIA,,0(x, y), k)

> n -i-1. We shall show D(p,1(i(x, y), k) > n + 1 assuming the induction hypothesis
for n. Using Ramsey's Theorem with the basic properties of the rank (3.2.(i),(vi)),
we can assume that the following situation holds.

(1) There is an A-indiscernible sequence (aicili < w) with p = tp(ao/Ab).
(2) {0(x,ci)I i < w} is k-inconsistent.
(3) pJA U 0(x, ci) C tp(ai/Aei) for all i < w.
(4) D(tp(ailAei), V,(x, y), k) > n.

Now by the forking axioms and 3.4. we may assume that tp(b/Aaoco) does not fork
over A and (aieili < w) is Ab-indiscernible. Since now tp(do/Acob) does not fork
over Aco, we notice D(tp(ai/Acib), 0, k) > n by the induction hypothesis. Hence
D(p U ei), ', k) > n for each i < w, and we conclude D(p, b, k) > n + 1.

§4. The Independence Theorem

The aim of this section is Proposition 4.5. which is an analogous result to Fact
1.4. In particular we suggest that 4.2. (and/or) the Independence Theorem (over
a model), which are weaker forms of the Boundedness axiom, can be substitutes
for it for simple theories.

LEMMA 4.1. Let T be simple and p(x, ao) be a type over Ado which does not
fork over A. If I = (aiI i < w) is a Morley sequence of tp(ao/A), then U{p(1, ai)li <
w} is consistent and does not fork over A.

Proof. Let <p(x, do, c) E p(x, ao) where c C A. We note that {cp(x, ai, e)1i < w}
is consistent by 2.7. Now it suffices to show that for given n < w, W(x, do, e) A ... A
p(x, an-1, c) does not fork over A. This is guaranteed again by 2.7. since (brl r E w)
where br = dn.ran.r}1...an.r+n_1e is a Morley sequence of tp(bo/A).

Lemma 4.1. is true even if I is just an indiscernible sequence.

COROLLARY 4.2. Let T be simple and p(x, do) be a type over Ado which does
not fork over A. If I = (aili < w) is an A-indiscernible sequence of tp(ao/A), then
U{p(x, ai)Ji < w} is consistent and does not fork over A.

Proof. Suppose that I' = (aw+ili < w) is a sequence such that I"I' is A-
indiscernible. Using 3.2.(iii) and (vii), it can easily be noticed that I' is a Morley
sequence of tp(a,/AI). Now let us take a complete extension p'(x, a.) over AIa,
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of p(x, a,.,) which does not fork over A. A basic forking calculation and 4.1. en-
able us to prove that < w} does not fork over A. Hence neither
U{p(x, a,,,+i)Ii < w} nor U{p(x, ai)Ii < w} forks over A.

We recall the notion "coheir" which plays an important role in proving 4.3. (A
detailed explanation of coheirs can be found in [10] or [11].) Let M C A. Then
p E S(A) is a coheirof pjM if every L(A) formula 0(x) in pis satisfied by some tuple
in M. I = (aiji < w) is a coheir sequence of q E S(M) if tp(ai/M U U{aili < i}) is
a coheir of q and a subset of tp(ai+l/M U U{aj jj < i + 1}) for each i < w. For any
T, a coheir sequence of given q E S(M) exists and any coheir sequence of q is an M-
indiscernible sequence of q. Moreover, a coheir sequence is a Morley sequence, but
the converse is not true in general, even for simple unstable T. A counterexample
appears in the random graph. A rather important property of a coheir sequence is
as follows. Suppose that {Inn < w} is a family of coheir sequences of q E S(M)
such that tp(I/M) = tp(I°/M) for each n < w. Then there is a sequence I' which
is a common extension of the I,,'s, i.e. I,-,I' is M-indiscernible for each n < w.

If T is simple, we call a set of tuples {ciji < /c} A-independent if for each i < r.,
tp(ci/A U U{cijj # i,j < K}) does not fork over A.

THEOREM 4.3. (the Independence Theorem) Let T be simple and M be a
model of T. Suppose that {a, b} is M-independent and p E S(M). Let pi E S(Ma)
and P2 E S(Mb) be extensions of p which do not fork over M. Then pi U p2 is
consistent and does not fork over M.

Proof. Suppose not, then there are formulas cp(x, y), (x, y) E L(M) such that
cp(x, a) E pi, b) E P2 and a) A 0(x, b) forks over M (or is inconsistent.)
Now by a basic forking calculation, we can find a tuple b' realizing tp(b/M) such
that {a, b'} is M-independent and V(x, a) A 0(x, b') is consistent and does not fork
over M. Now let I = (biIi < w) be a coheir sequence of tp(b/M) with b° = b.
We may assume that I is Ma-indiscernible, by 3.4. Moreover there is an Ma-
indiscernible sequence I' = (bijj < w) with b° = b' such that tp(I/M) = tp(I'/M).
Let J be a common M-indiscernible extension of I and P. We may further assume
that there is an infinite subsequence J' = (eiIi < w) of J such that tp(dei/M) are
all the same for all i < w. Now in order to deduce a contradiction, let us consider
the following two cases.

(Case I) p(x, a)A (x, ci) is consistent and does not fork over M for each ci E Y.
Now with I, we already have the following additional situation.

V(x, a) A bi) forks over M (or is inconsistent) for each bi E I

By indiscernibility of IJ', we obtain a sequence (aiji < w) with a° = a such that

V(x, ai) A V)(x, ej) is consistent and does not fork over M if and only if i < j.

Furthermore Ramsey's Theorem enables us to assume that (aicili < w) is M-
indiscernible. But it can easily be seen that this contradicts Corollary 4.2.

(Case II) cp(x, a) A ci) forks over M (or is inconsistent) for each ci E Y.
Since I'J' is M-indiscernible, similarly to (Case I), we obtain a contradiction.
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COROLLARY 4.4. Let T be simple. Let {aili E I} be M-independent and
p E S(M). Suppose that pi E S(Mai) is an extension of p which does not fork over
M for each i E I, then U{pili E I} is consistent and does not fork over M.

(Question) Does the Independence Theorem hold over an algebraically closed
set in Ceq when T is simple?

For stable T, the Independence Theorem over a model obviously follows from
the uniqueness of nonforking extensions over a model. The Independence Theorem
over an algebraically closed set (in Ceq) also holds since there is a unique nonforking
extension over the set, too. But we can not expect the Independence Theorem to
hold over an arbitrary set. An equivalence relation having finitely many infinite
equivalence classes trivially supplies a counterexample.

PROPOSITION 4.5. (1) If T is simple, then nonforking satisfies (i) Symmetry,
(ii) Transitivity, (iii) Extension, (iv) Local Character, (v) Finite Character and the
following.

(vi) (4.2.) Suppose that p(x, ao) E S(Aao) does not fork over A. Let I = (a,Ii <
w) be an A-indiscernible sequence of tp(ao/A). Then there is a tuple b realizing
U{p(x, ai)Ii < w} such that tp(b/AI) does not fork over A.

(vi)' (the Independence Theorem) Suppose that {a, b} is M-independent and
p E S(M). Let pi E S(Ma) and P2 E S(Mb) be extensions of p which do not fork
over M. Then there is an extension p3 E S(Mab) of pl U P2 which does not fork
over M.
(2) Assume that, in a theory T, an automorphismn-invariant relation between com-
plete types and sets satisfies the preceding axioms (i) to (v) (in terms of nonforking).
If the relation satisfies (vi)' then it satisfies (vi).
(3) If the relation in T satisfies (i) to (v) and either (vi) or (vi)', then T is simple
and the relation is nonforking.

Proof. (1) Done.
(2) Suppose that the relation in T satisfies (i) to (v) and (vi)'. Let us temporarily

say "p is free over A" if (p, A) satisfies the relation. Now if I = (aiIi < w) is an A-
indiscernible sequence, then Ramsey's Theorem and (iv) enable us to find a model
M containing A such that I is M-independent (w.r.t. the relation). Now suppose
that p(x, do) E S(Ado) is free over A. Then by a routine argument we can show
that U{p(x, ai)Ii < w} has a complete extension over Al which is free over A.

(3) Suppose that the relation in T satisfies (i) to (v) and (vi). It is enough
to show that whenever p E S(Ab) then p is free over A if and only if p does not
divide over A (cf. Lemma 3.3.). Let us denote p = p(x,6). Now there is an A-
indiscernible and A-independent (w.r.t. the relation) sequence I = (bili < w) with
bo = b (cf. Proposition 2.4.). If p(x,b) is not free over A, then {p(x,bi)Ii < w}
should be inconsistent in order not to contradict (iv). Hence p(x, b) divides over
A. Conversely, let us assume that p(x, b) is free over A. Then by (vi), p(x, b) does
not divide over A.

4.5.(3) can be applied to fields with an automorphism, pseudo-finite fields and
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smoothly approximable structures where there are notions of independence fulfilling
basic axioms plus the Independence Theorem over a model. Furthermore these
structures are known to be unstable. Hence we conclude that each structure is
simple unstable, and the independence notion in each structure is nonforking.
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